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Abstract

The cell membrane plays an important role in signaling, protecting, and the trans-
portation of ions between the intracellular and the extracellular environments of a cell.
In spite of the wide literature, only a few has been dedicated to the thermal properties
of the membrane. Whether the thermal conductivity of the cell membrane is affected
by its components specifically cholesterol or the membrane proteins has not been in-
vestigated so far. Although the experimental measurement of the membrane thermal
conductivity was not available until very recently, computational methods have been
widely used for this purpose. Nonequilibrium molecular dynamics simulation is one
of the commonly-used computational techniques to study transport properties of a
system. Thermal conductivity of a model membrane was first computed by Miiller et
al. using their devised method called Miiller-Plathe technique, which has been used
by others in the last few years as well.

Among different types of nanoparticles, silica or amorphous silicon dioxide (SiOs)
has gained much attention due to the specific features including low toxicity, low cost
and high biocompatibility. Silica nanoparticles can affect the behavior of the nearby
biomolecules in different ways depending on the nanoparticle size, curvature, surface
charge, surface chemistry, and also the type of surface functional groups.

The effect of organic/inorganic surfaces on the behavior of biomolecules and the
impact of biomolecules on the surfaces have gained much attention in recent years. In
the present study, we use classical molecular dynamics simulation to investigate the
interaction of specific biomolecules with two different surfaces: cell membrane and
amorphous silica.

In the first part of this thesis, we carry out nonequilibrium molecular dynamics
simulation to investigate the relation between the concentration of cholesterol and
the thermal conductivity of a model membrane. Our results suggest an increase in
the membrane thermal conductivity upon increasing the concentration of cholesterol
in the membrane. Moreover, we find that the asymmetric distribution of cholesterol

in the two membrane leaflets decreases thermal conductivity.
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We also find a rectification effect when heat flows in opposite directions through
a model membrane decorated with the amyloid precursor protein. The results of
this study apply to the advancement of selective treatment methods, as well as the
development of new materials such as biological rectifiers.

In the second part, we conduct molecular dynamics simulations of a hydrophobic
segment of the amyloid beta peptide near the amorphous silica water interface. The
peptide binds strongly to the surface via the hydrophobic and electrostatic interac-
tions. These interactions affect the specific conformations and also the rotational
mobility of the peptide. The orientation of the peptide relative to the surface is likely
to play an important role in the fate of amyloid aggregation at the surface of silica
nanoparticles.

Keywords
Thermal conductivity, Amyloid beta, Organic surfaces, Molecular dynamics simula-

tion, Amorphous silica, Clustering, Autocorrelation
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Chapter 1

Introduction

1.1 Computational methods to study biological sys-
tems

An exact description of the dynamics and states of a molecular system is possible
through the time-dependent Schrodinger equation. However, because of the multi-
dimensionality of the problem and the extensive degrees of freedem this equation
does not have an exact solution at the present time. Approximations to handle this
problem include Born-Oppenheimer and Hartree-Fock [11, 12]. In Born-Oppenheimer
approximation it is assumed that the nuclei are fixed (in the timescale of electron
vibrations) while in the Hartree-Fock approximation, the movement of one electron
is considered to be independent of the other electrons. Using these approximations,
the Schrodinger equation can be solved numerically for up to 50 to 100 atoms which
is not applicable to large biomolecules.

Computer simulations make a bridge between theory and experiment [13|. To
study large molecules, a classical approximation is required to speed up the calcu-
lations. Molecular mechanics (MM) fulfills this aim. Considering atoms as spheres
connected to each other by bonds, MM calculates the motion of atoms based on
van der Waals and Coulomb interactions [11, 14]. In this method, correctness and
precision of the results highly depend on the way the parameters are given to the
model. The parameters are usually provided by theoretical (quantum mechanical

calculations) means or evaluated by empirical values [12].



1.1.1 Molecular dynamics simulation

In general, molecular simulations provide an understanding of macroscopic properties
of a molecular system based on the microscopic or intermolecular interactions [15].
Molecular Dynamics (MD), Monte Carlo (MC), and Brownian Dynamics (BD) sim-
ulation are commonly used methods of molecular simulation. Monte Carlo is useful
to analyze systems at thermodynamic equilibrium, but is not suitable for dynamical
properties. Molecular dynamics can be used for both purposes. MD is especially use-
ful for the investigation of transport properties or to study a system at nonequilibrium
condition [16].

In molecular dynamics simulation, the particles are moved based on the numerical
solution of classical equations of motion. A very general description of a molecular

dynamics algorithm for a system consisting of NV particles is as follows:

1- Initial positions and velocities are assigned to particles in the simulation box.
Conditions at which the simulation should be done (temperature, pressure, etc.) are

determined as well.

2- The forces acting on each particle is obtained by solving Newton’s equations of
motion (Equation 1.1).

fi =mr; (1.1)

where f is force acting on particle ¢, m is mass and r indicates the position of particle
i(i=1,..,N).

3- The equations of motion are integrated and accordingly, the system is evolved
over time. Several algorithms have been designed for this purpose. The necessary
feature of all these algorithms is time-reversibility. Verlet and leap-frog are two exam-
ples. Verlet method for estimating new positions of particles is described in Equation
1.2. This equation indicates that the error in the calculation of positions in Verlet

method is in the order of At*, where At is the simulation time step. Velocities are



calculated using Equation 1.3 with an error in the order of At?.

r(t+ At) = 2r(t) —r(t — At) + %A# + O(AtY) (1.2)

o(t) = r(t+ At)zgtr(t — At)

It should be mentioned that there are other algorithms that computes the velocity

+ O(AP?) (1.3)

more accurately than Verlet does. On the other hand, the error depends on the
simulation time step as well. The smaller the time step, the more accurate the
results. However, an optimized algorithm is the one that compromises between the
accuracy and the computational cost. What is necessary to consider is that the time
step of the simulation must be smaller than the fastest motions in the system. In the
biological systems, such as the ones we have in our study, the oscillation of hydrogen
atoms is the fastest motion which is in the order of 1-10 fs. Therefore, the time step
of our simulations cannot be smaller than 1 fs.

4- Finally, the averages of the desired quantities are calculated.

Thermodynamic ensembles (NVE, NVT, NPT)

In molecular dynamics simulations, microscopic behavior of the system can be ob-
tained using the positions and velocities of the particles at each time step. A link
between the microscopic world and the macroscopic properties of the system is then
required for the calculation of thermodynamic observables such as pressure or heat
capacity. Statistical mechanics provides this link via the notion of ensembles [17].
Under ergodic condition, the ensemble average of the system is equal to the time
average over the trajectories obtained from MD simulations.

The most fundamental ensemble, called the microcanonical (NVE) ensemble, de-
scribes a system consisting of N particles in a constant volume V with a fixed internal
energy E. However, to have a microcanonical ensemble the system should be isolated
from the environment. This is usually far from the usual conditions in the experiments
[17].

To better reflect the experimental setups, the canonical ensemble (NVT) has been



developed in which the constant control variables are: the number of particles N, the
volume of the system V, and the temperature T. Considering the relation between
the temperature and the kinetic energy of a system (Eq. 1.4), the temperature of
a system can be controlled by manipulating the velocities of the particles in that

system.

(1.4)

where N is the number of particles in the system, kg is the Boltzmann constant,
T is the absolute temperature in kelvin, and p; and m; are the momentum and mass
of the particles, respectively.

In molecular dynamics simulation, to keep the temperature of the system constant,
it is necessary to include a thermostat in the Hamiltonian of the system. To this
aim, several algorithms have been developed. Some examples are: Berendsen [18§],
Nose-Hoover [19, 20|, and Langevin [21]. Temperature coupling is more stable in
the Langevin thermostat in which the equations of motion are changed either by the
inclusion of a "random force" or by the addition of a deterministic "frictional force"
which is proportional to particle velocities. For a more detailed discussion of Langevin
equation the reader is referred to sectoin 12.2 in reference [22].

Doing experiments under constant pressure is more usual in the laboratory. There-
fore, the isothermal-isobaric (NPT) ensemble has been developed to better mimic the
experimental conditions. In this ensemble, the system is coupled not only to a ther-
mal bath, which keeps the system at a constant temperature, but also to an isotropic

piston which allows the system volume to fluctuate [17].

Force Fields

As we mentioned earlier, to move the particles at each step of the simulation, we need
to know the forces acting on them. As Equation 1.5 shows, force is derived from the
potential energy. The exact form of the potential energy and its relative parameters

are provided in files called force fields.
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Potential energy of a system generally consists of two parts: intramolecular and

fi=

(1.5)

intermolecular potentials.

Intramolecular potential which refers to the potential energy between atoms inside a
molecule, arises from stretching, bending, and out of plane motions (Equation 1.6). A
simple yet sufficiently accurate model to describe these motions is a harmonic poten-
tial. Equations 1.7, 1.8, and 1.9 show different terms of the intramolecular potential.
In these equations, k is the spring constant and r, and 0., are the equilibrium values
for the bond length and angle, respectively. For more details, the reader is referred

to the reference [13].

Uintramolecular = Ubonds + Ubendfangles + Utorsionfangles (16)
Ubonds - Z k: sz Teq (17)
bonds
1
Ubendfangles = 5 Z kfjk(‘%]k - eeq)Z (18)
bend—angles
1
Utorsion—angles - 5 Z Z kzjkl ]- + cos m¢2jk‘l Vm)) (19)

torsion—angles m

Intermolecular potential refers to the potential between nonbonded atoms. Two
terms of the intermolecular potential are Lennard-Jones (LJ) and Coulomb potentials.

LJ is a two-body potential which is described by Equation 1.10.

o o
ot (r) = e (22 = (2)°) (1.10)
r r
where o is the distance between two atoms at which the potential energy is zero, € is
the well depth of the potential function and r is the distance between two atoms.

The Coulomb potential exists in the presence of charged particles and is described



by Equation 1.11.

UC’oulomb(r) — le? (111)
TEQT

where ()1 and (), are charges and ¢ is the free space permittivity.

Nonequilibrium molecular dynamics

From a statistical mechanical point of view, a nonequilibrium system is modeled as
an equilibrium ensemble which is perturbed by a field. This field prevents the system
from relaxing to its equilibrium state by doing work on it [23]. This results in the
generation of heat in the system.

In equilibrium, conjugate thermodynamic variables (such as pressure and volume)
generate conjugate ensembles (NVT and NPT). Similarly, conjugate state variables
define conjugate ensembles at nonequilibrium. For instance, consider a thermostat
acting on a system at nonequilibrium to remove the dissipated heat from the system.
The rate of heat flow (dQ/dt) in the system can be written as a multiplication of a
thermodynamic force and a thermodynamic flux. Therefore, a nonequilibrium ensem-
ble in which the thermodynamic force is the independent state variable is equivalent
to an ensemble in which the state variable is the thermodynamic flux. This is a very
similar concept to the paired Thévenin and Norton ensembles in the electrical circuit
theory [23].

In nonequilibrium molecular dynamics (NEMD) simulation, we are interested in
finding system response to a perturbation [24|. Most of the times, the perturbation
is a thermodynamic force while the response is a thermodynamic flux. Simulation
provides us with the microscopic expressions that we need to evaluate these fluxes.
Where the flux is directly proportional to the driving force, the Green-Kubo formalism
can be used to study nonlinear properties using the equilibrium simulations. However,
it is limited to the linear regime.

NEMD is widely used to obtain transport properties of a system. Transport
equations relate the fluxes of properties to the property gradient. Among the many
applications of NEMD, we refer to the measurement of thermal conductivity which

is the scope of this study. There are two possible approaches to obtain the thermal



conductivity of a material. In the first approach, which is called the direct method,
one can create a temperature gradient across the system and measure the rate of heat
flow throughout the system. The thermal conductivity coefficient is then obtained
by dividing the rate of heat flow to the temperature gradient. Because of some
drawbacks, including highly fluctuating heat flow and slow convergence of the system,
an alternative method is to continuously apply a nonphysical heat flux to the system
until a physical heat flux establishes throughout the system. After some time, the
physical and nonphysical heat flow rates are equalized and the system reaches a
so-called steady state. In this situation, a stable temperature gradient establishes
across the system. This method is called reverse nonequilibrium molecular dynamics
(RNEMD) and was first proposed by Miiller-Plathe [25]. The Miiller-Plathe technique
can be simply implemented, is compatible with the periodic boundary condition, and
keeps the total energy and total linear momentum conserved. This method samples
temperature gradient instead of heat flux. This is a real advantage because other
methods such as Green-Kubo [25] suffers from the slow convergence of heat flux and

its autocorrelation function.



1.1.2 Cluster analysis

In cluster analysis, the aim is to find patterns in a data set by grouping the observa-
tions. To optimize clustering, objects within a cluster should be similar while those
between clusters must be dissimilar. It should be noted that in clustering, the number
of groups is not known in advance. There are many types of clustering algorithms
based on different measures of similarity. In many of clustering algorithms, a mea-
sure of distance is used to group the observations into clusters. A common distance
function is the Euclidean distance.

Hierarchical and partitioning clustering are two common methods of clustering. In
hierarchical clustering each observation is initially considered as a cluster and in a
sequential process, clusters merge together until a whole cluster containing all the
observations is formed. This procedure which is called agglomerative hierarchical
approach can also be reversed. In this case, it will start with one cluster containing
all the observations which divides into clusters at each step. This is called divisive
hierarchical approach. However, the former approach is more common.

Results of a hierarchical clustering approach is illustrated using a tree diagram called
"dendrogram" which indicates all the steps of hierarchical procedure as well as the dis-
tances at which clusters are merged together. Based on the size of the distances, one
can make a decision about the optimal number of clusters. Among the many available
agglomerative algorithms, Ward’s and the average linkage method have gained more
popularity because of their overall performance. To find more details on the method,

the reader is referred to the reference book [26] and the main papers [27, 28|.

Ward’s Method

In Ward’s method, also known as the incremental sum of squares method, the within-
cluster (squared) distances as well as the between-cluster (squared) distances are used
as measures of similarity. We consider AB to be the cluster obtained after merging

clusters A and B. The sum of within-cluster distances can then be obtained.
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where Y 5 = (na¥a +npYg)/(na+np) and na, np, and nap = na +np are sizes
of A, B, and AB, respectively. In Ward’s method, each two clusters that minimize

14, as defined in Equation 1.15, can be combined together. This is exactly equivalent

to minimizing the between-clusters distances.

Iap = Dap — (D4 + Dp) (1.15)

where D4 and Dp are within-cluster distances (distances of each item in the
cluster from the cluster mean vector) for clusters A and B, respectively, and D 4p is

the distance between clusters A and B.

Hierarchical clustering

In hierarchical clustering, each observation is initially considered as a cluster and in
an iterative manner, the number of clusters and elements within a cluster is optimized

based on the between- and within-clusters distances [28].



1.2 Interaction between biomolecules and surfaces

The interaction of biomolecules with surfaces has been a topic of interest in many
applications and hence, the target of many studies for decades [29, 30, 31, 32, 33, 34].
One of the main motivations for this is the importance of biomolecule-surface inter-
action specifically at the nano scale. The large surface-area-to-volume ratio of NPs
leads to the dominance of the behavior of the surface atoms over the interior ones and
consequently affects the physical, chemical, and biological interaction of nano sized
particles with other materials. Unique properties of NPs made them suitable can-
didates for potential applications from industry to medicine including drug delivery,
gene delivery, biosensing, and bioimaging [35, 36, 37, 38, 39, 40, 41|. However, the
adsorption of a variety of proteins on the surface of NPs modify the NP properties
such as their physicochemical identity, cellular uptake, and toxicity. Therefor, a prior
knowledge about the interaction of biomolecules with NPs is required.

Interaction of NPs with biomolecules may result in one of the two immobilization
mechanisms: simple adsorption or chemical linkage. Simple adsorption includes van
der Waal forces, hydrogen bonding, or ionic interactions which are categorized as
non-covalent forces. An example is the immobilization of enzymes on the surface of
NPs in which the active site of the enzyme is not disturbed. Difference in chemical
bonds, which results in different physical properties, usually immobilize biomolecules
interacting with a biocompatible matrix such as a phospholipid membrane. In this
case, not only physical properties of the biomolecules (such as hardness, melting point,

and conductivity) but also their biological activities are altered as well [42].

Alzheimer’s disease and the formation of Amyloids

Alzheimer’s disease is a neurodegenerative disorder leading to the neural cell death
and brain shrinkage. Many factors are involved in the initiation and the progression
of Alzheimer’s disease. Aging, genetics, and heredity are known to be the main risk
factors. Furthermore, those suffering from diabetes, high blood pressure, and high

levels of cholesterol, who are also at risk of vascular diseases, are at a higher risk of

AD.
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Several studies have addressed the main cause of neural cell death. Amyloid hy-
pothesis which appears to be the most widely accepted one during the last 20 years,
proposes that aggregation of a protein called Amyloid beta (AS) leads to plaque for-
mation that are neurotoxic and can cause neural cell death. Plaques also damage
synapses and block cell signaling. Moreover, accumulation of AS in vascular system
of the cerebellum causes constriction in blood vessels and neuronal dysfunction, which
was found to be associated with AD [43|. However, more recent studies suggest that
although Af is associated with the development of AD, it has not been proved to be
the main cause of AD according to several reasons. Firstly, removal of A plaques by
pharmaceutical methods had no effect neither on the progression of AD nor on the
memory improvement. Secondly, neuronal loss was observed in the areas of the brain
far from the areas where AS was accumulated. Thirdly, AS aggregations emerge in
the areas of neocortex and hippocampus many years before the appearance of clinical

symptoms of AD. So, what triggers the disease is still a matter of debate.
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1.2.1 Effect of surface on the amyloid formation

Among several studies on the interaction of different biomolecules with surfaces, many
have focused on the effect of surface on amyloid formation. As the hallmarks of many
neurodegenerative disorders such as Alzheimer’s or Huntington’s disease [44], amyloid
fibrils are formed when unfolded proteins aggregate and form beta sheet structures.

Amyloid beta is one of the well-known amyloidogenic proteins in this respect.

Structure of amyloid beta

AB(1-42) is a sequence of amino acids as listed in the following:

Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-GIn-Lys-Leu-Val-Phe-
Phe-Ala-Glu-Asp-Val-Gly-Ser- Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met- Val-Gly-Gly-Val-
Val-Ile-Ala

The sequence 16-23 is known to be amyloidogenic and more important in fibril
formation [6, 45].

Different forms of Af exist in different structural forms with different stabilities
and pathological functions. Some of these forms are as follows:

1. Short oligomers with higher toxicity [46] and lower physical and mechanical
stability

2. Protofibrils which are transient structures before fibril formation, are more
toxic than mature fibrils [44].

3. Fibrils which have the lowest free-energy and thus the highest stability against
physical perturbation [47]. They also have high thermal stability [48].

A recent study applied experimental approaches including ultraviolet resonance
Raman spectroscopy and atomic force microscopy (AFM) in combination with molec-
ular dynamics (MD) simulations and stress strain (SS) calculations to study struc-
tural and mechanical properties of amyloid fibrils such as secondary structure and
Young’s modulus [49]. Results suggested that these properties are size- and structure-
dependent.

Another study suggests that AfS aggregates in the form of fibrils or other self-

assembled forms have a significant role in the progression of Alzheimer’s disease (AD).
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Fibrils formed by both AS (1-40) and AS (1-42) are polymorphic with variation in
their molecular structures which depends on their growth condition. Moreover, the
correlation between different AS polymorphs and AD phenotypes was investigated

using solid state nuclear magnetic resonance (ssNMR)[50].
Toxicity

It is evident that nanomolar concentrations of Af is crucial for neural development
and neurotransmission [43]. In fact, only high concentrations of Aj is toxic. There-
fore, there is a relationship between the concentration of AS and its toxicity. In
normal cases, there is a steady state in which the rate of AS production and elimi-
nation are the same. If this state is perturbed, it leads to dysregulation of A5 and
plaque formation.

Some other studies suggest that specific structural forms of A5 are able to induce tox-
icity. Aggregated peptides, soluble oligomers and insoluble Aj assemblies are known
to be the most toxic species among the others [43].

Oligomeric intermediates are formed in the process of fibril formation in solution.
Results of a recent experiment on hen egg white lysozyme (HEWL) suggest that
silica nanoparticles (SNPs) prevent the formation of these toxic intermediates by
accelerating the fibrillation process [51]. The same study showed that the structure
of fibrils change in the presence of silica. Fibrils formed near silica are mostly beta
sheet rich structures while those formed in solution appears in the form of globular
aggregates. The authors have also talked about the observation of a peak in the high-
frequency region of FTIR spectrum which is the hallmark for anti-parallel beta sheets.
They did their experiments at acidic and high temperature conditions in which HEWL
has an unfolded structure. Therefore, they proposed that the aggregation process
will become faster if the aggregation hot spots of HEWL are exposed to the solvent.
To verify this, they characterized the hot spot regions of HEWL using the online
server AGREESCAN and observed no acidic residue in the hot spot regions. Since
at pH=2 (in which the experiment was done) the surface of silica nanoparticles are

neutral and HEWL has a large positive charge, it was predicted that the binding of
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HEWL on silica is mostly due to the hydrogen bonding between the silanol groups of
silica and -COOH groups of the acidic residues of HEWL. Therefore, they predicted
that the non-amyloidogenic parts of HEWL attach to silica nanoparticles and the
amyloidogenic parts are exposed to the solvent facilitating the formation of ordered

beta sheets.

1.3 Silica: an inorganic surface

Among different types of nanoparticles, silica (amorphous silicon dioxide, SiO3) has
gained much attention due to some specific features such as low toxicity, low cost and
high biocompatibility [52|. For instance, silica nanoparticles (SNPs) have been re-
cently found to be suitable candidates for protein removal from human serum samples
at physiological pH [53|. The procedure is based mainly on the attractive interaction
between serum proteins and SNP which results in the aggregations and precipitation
of proteins and particles. This way, experimentalists can get clear results from nuclear
magnetic resonance spectra and have a more accurate diagnosis based on the serum
content.

Silica nanoparticles can affect the behavior of the nearby biomolecules in different
ways depending on their size, curvature, surface charge, surface chemistry, and also
the type of functional groups on their surface [54, 55, 56, 57|. In the specific case
of peptide adsorption to SNPs, there are other factors that also determine binding
strength as well as the prevalence of different binding modes. Surface hydrophobic-
ity /hydrophilicity, peptide bulk concentration, and solution salt concentration and
pH are known to be important factors in this respect [58]. For instance, a change in
the environmental pH from acidic to neutral leads to a higher tendency of cationic
peptides for binding to the silica surface. This is mostly due to an increase in the
number of deprotonated silanol groups on the silica surface at neutral pH in com-
parison with the acidic environment. However, the scenario is completely different
for hydrophobic negatively charged peptides. Electrostatic interactions at neutral
pH result in a repulsion between the negatively charged peptides and silica surface.

Therefore, negatively charged peptides previously attached to the silica nanoparticles
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in an acidic environment could be easily detached from the surface at neutral pH [59].

A comparison between the effect of pH and ionic strength on binding of lysozyme
to silica nanoparticles has been recently reported [60]. The results revealed that
protein-silica binding was mostly affected by pH and not by the electrolyte concen-
tration except in two specific cases, one near pH 5 and the other one near the protein
isoelectric point. Similar effects have already been reported in experimental studies
for DNA adsorption/desorption into/from silica surface by changing pH [61]. The
effect of pH and ionic strength on multiphasic adsorption of DNA into silica nanopar-
ticles has also been investigated [62]. It was observed that low pH and high ionic
strength are good conditions for stronger binding. Moreover, the flexibility of DNA
has been found to change during different phases of binding from an initially rigid
into a viscoelastic conformation after some minutes which could be partly because of

a decrease in the number of contacts after binding to the surface.

1.3.1 Adsorption of biomolecules on the silica surface and the
main driving forces

The main reason for binding of peptide to the SNP has been a topic of interest in
recent years. In an experimental study, binding coefficients of single amino acids to
silica has been calculated for all 20 natural amino acids by Xie et al. [31]. Accord-
ing to their findings, both electrostatic and hydrophobic interactions play important
roles in the adsorption of amino acids to surfaces. In a recent work, Patwardhan et al.
proved both computationally and experimentally that a combination of electrostatic
and non-electrostatic interactions are responsible for the binding of cationic and non-
cationic peptides to the silica surface [63].

Experiments provide important characterization on the behavior of biomolecules at
the silica surface; however, the molecular details are often missing. There have been
several theoretical works studying the behavior of different types of biomolecules at

the interface.

In 2007, Hassanali et al. developed a model (as an extension to the BKS and
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SPC/E models) to describe the undissociated amorphous silica surface and obtained
the model parameters using ab initio quantum chemical calculations. The calculated
heat of immersion in water with this model was in good agreement with the corre-
sponding experimental value [64].

In 2010, the same group extended this model by including the dissociated silanol
groups [65]. The extended model characterizes the interaction of silica surface with
water and sodium and chloride ions. The model was verified either with experimental
measurements (such as the heat of immersion) or with ab initio results.

In 2015, the model was further developed for the general studies of biomolecules at
the silica-water interface using ab initio quantum chemical data [1]. To this end,
the interaction of specific molecules was investigated with a selection of groups on
the silica surface. Figure 1-1 demonstrates these interactions. The selected surface
groups include a variety of polar, charged, and hydrophobic groups. Among the probe
molecules there are also nonpolar (methane), polar (methanol), charged (ammonium

and acetate), and aromatic (benzene) groups.

16



¢) methanol-O i d) methanol-O ,

e) ammonium-0 f) ammonium-0 , g) acetate—0 h) benzene—O X/O -

Figure 1-1: Different groups of silica interact with probe molecules. Interactions
between (a) methane and oxygen atom of the siloxane group (Si-O-Si), (b) methane
and oxygen atom of the silanol group (Si-O-H), (¢) methanol and oxygen atom of
the silanol group, (d) methanol and oxygen atom of the dissociated silanol group
(Si-O7), (e) ammonium and oxygen atom of the silanol group, (f) ammonium and
oxygen atom of the dissociated silanol group (Si-O~), (g) acetate and oxygen atom of
the silanol group, and (h) benzene and oxygen atom of the silanol /dissociated silanol
group. This figure is adopted from reference [1].

To understand why negatively charged DNA binds to the negatively charged silica
surface, the same group [1] investigated the mechanism of DNA binding to silica using
the force field developed previously by themselves [64, 65]. Two main mechanisms
were reported for DNA binding to silica: attraction between phosphate group in DNA
and silanol groups on the silica surface; hydrophobic interaction between DNA bases
and the hydrophobic regions of silica where no silanol group is found (see Figure 1-2).
In comparison with the bulk density of water and the density of water around
silanol groups, a lower water density was previously reported above these hydrophobic

patches (Figure 1-2b)[64].
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Figure 1-2: (a) Bases in the DNA interact with the hydrophobic regions on the silica
surface. (b) Hydrophobic patches of the silica surface. This figure is adopted from
reference [1].

The same study has also reported that the binding of single stranded DNA (ss-
DNA) is stronger than double stranded DNA (dsDNA) which is mostly due to the
fact that ssDNA has unpaired bases, more flexibility, and less charge in comparison
with dsDNA.

In a more recent study [66], Shi et al. investigated the binding of two different
tripeptides (KWK and EWE) to the silica surface. It is interesting that not only the
positively charged peptide (KWK) but also the negatively charged peptide (EWE)
binds to the negatively charged silica surface. This explains the important role of sev-
eral binding mechanisms (specifically the hydrophobic interaction between the indole
groups and hydrophobic regions of the surface) other than the electrostatic interac-
tions. In addition, there were cases in which the negatively charged carboxyl groups
bind to the silanol hydrogens. All of these binding mechanisms suggest that a va-

riety of binding modes are involved in the binding of biomolecules to the silica surface.

To model the interactions at the silica-water interfaces, another force field was

developed in 2014 by Emami et al. [67]. Some of the important features of this force

18



field are: more accurate interfacial properties in comparison with experiment, full mo-
bility of atoms, match between computed and measured values of density of states,
agreement of computed and measured immersion energy of surfaces in water, agree-
ment of the amount of dissociated cations and the value of (-potential as a function
of pH and particle size, and compatibility with the major biomolecular and organic
force fields such as AMBER, CHARMM, INTERFACE, and COMPASS. In an ac-
companying paper, they investigated the effect of pH and size of silica nanoparticles
on peptide adsorption for three different peptides with negative, positive, and zero
charges [68]. They obtained the strength of peptide adsorption and selective binding
of different residues using molecular dynamics simulations.

According to their results, because of the fewer SiO~ groups on the silica surface at
low pH, the positively charged peptides are adsorbed to the surface mostly through
their polar and hydrophobic residues. Moreover, the peptide took a flat-on confor-
mation. The authors referred to the role of hydrogen bonded network between water
molecules in driving the hydrophobic residues to the silica surface since these residues
disrupts the liquid water network.

On the other hand, the higher adsorption of the positively charged peptides on the
more negatively charged surfaces at higher pH was mainly through the N-terminal of
the peptide. In this case, the peptide took an anchors-like conformation.

However, the story was reported to be completely different for the negatively charged
peptides. These peptides had lower affinity toward the more ionized silica surface at
higher pH while they adsorbed more and through different residues on the less-ionized
silica surface at lower pH.

Authors of the same study concluded that hydrophobic interactions are more abun-
dant at low surface ionization and separation from the aqueous phase is the main
driving force for them to come to the surface. However, electrostatic interactions
were reported to be stronger than hydrophobic interactions. Strength of interactions
were assessed through the calculation of free energies and binding energies. For short
peptides (consisted of less than 10 residues), the values of both energies were reported

to be almost the same since the entropic contribution is negligible. The reason is that
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when a peptide is adsorbed to a surface, its mobility decreases which results in a
reduction in entropy. Instead, lots of water molecules are detached from the surface
to give their places to the peptide. Therefore, they increase the system entropy and

compensate for the reduction in entropy caused by the adsorption of peptide.

1.4 The cell membrane: an organic surface

Plasma membrane, the fundamental component in all cells, separates the inner side
of the cell from its outer environment. Components of the cell membrane (mainly
lipids and proteins) are stabilized by noncovalent forces, giving the membrane a non-
rigid (deformable) feature [2]. The cell membrane regulates the cell metabolism by
controlling the transport of materials between the intracellular and the extracellular
space. It also plays an important role in controlling the exchange of heat between
inner and outer parts of a cell. Moreover, membrane proteins (receptors) play a

significant role in cell-cell and cell-matrix recognition.

1.4.1 Membrane composition

It is evident that the properties of the membrane depend highly on the membrane
composition [69]. For instance, rigidity which is a structural property of the mem-
brane depends on the concentration of cholesterol.

The cell membrane is mainly composed of amphipathic lipids (i.e. lipids with a
hydrophilic and a hydrophobic end), proteins, and carbohydrates [70]. However,
the concentration of each constituent is different in different types of cells. Mem-
brane lipids are divided to three main categories: phospholipids, glycolipids, and

sterols.
Phospholipids

In the majority of cell types, phospholipids are the most abundant lipids [71]. They
constitute more than half of the lipids in the membrane. Phospholipids are made
of a glycerol molecule, two uncharged nonpolar tails (fatty acids), and a negatively-

charged phosphate group, which makes the polar head. Chemical structure of a
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phospholipid molecule called phosphatidylcholine is represented in Figure 1-3. In
the aqueous environment, phospholipids form micells. It is mainly because of the
tendency of their polar heads to water, whereas their hydrophobic tails escape away

from polar water molecules.

N
/|\

Figure 1-3: Chemical structure of phosphatidylcholine. The figure is adopted from
reference [2].

Four main types of phospholipids found in the membrane of animal cells are phos-
phatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin.
These phospholipids are unevenly distributed in the two leaflets of the membrane. As
it is illustrated in Figure 1-4, phosphatidylethanolamine and phosphatidylserine are
found mainly in the inner leaflet of the bilayer while phosphatidylcholine and sphin-
gomyelin are the most predominant lipids in the outer leaflet [3, 72]. Cholesterol is

found in both leaflets.
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Figure 1-4: Asymmetric distribution of lipids in the two membrane leaflets.
GM, SM, PE, PS, and PC stand for ganglioside lipids, sphingomelin, phos-
phatidylethanolamine, phosphatidylserine, and phosphatidylcholine, respectively.
The figure is adopted from reference [3].

Sterols

The most common sterol in animal cells is cholesterol. Similar to most of the lipids
in biological membranes, cholesterol has an amphipathic nature (i.e. it is consisted
of a hydrophobic and a hydrophilic group). As it is illustrated in Figure 1-5, the
hydrophilic (polar) head of cholesterol is a hydroxyl group connected to a planar
body composed of four fused rings. A saturated hydrocarbon chain makes the short

hydrophobic tail of cholesterol.

Concentration of cholesterol is normally between 10 and 45 molar percentage of

total lipids in the membrane [73].

Figure 1-5: Chemical structure of cholesterol molecule. The figure is adopted from
reference [2].
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Membrane proteins

Proteins are the other important building blocks of the cell membrane doing a variety
of tasks. Membrane proteins are divided into two main categories: integral membrane
proteins (embedded in the membrane) and peripheral membrane proteins (located
on the membrane surface) |2, 71, 74]. Integral membrane proteins interact with
membrane via their transmembrane domain, which mostly consists of hydrophobic
amino acids.

Membrane proteins interact with the membrane in different ways. They can cause
disorders in the membrane and can be affected by the physical state of the lipid

bilayer. Membrane thickness can also affect the structure of membrane proteins [2].
Amyloid Precursor Protein (APP) as an integral membrane protein

Amyloid precursor protein (APP) is a well-known example of integral membrane
proteins |75, 76]. More than half of the mutations in APP associated with Alzheimer’s

disease occur in the transmembrane domain of this protein [77].

1.4.2 Effects of cholesterol on the membrane

Cholesterol decreases the permeability of the plasma membrane, reduces the con-
formational flexibility of membrane proteins, and disturbs the phase transition of
saturated phospholipids in the membrane. Several studies report the condensation
effect which is a structural change in the membrane upon the addition of cholesterol
molecules [78, 79]. Condensation means that the area per lipid molecule decreases to
less than the weighted average of areas of pure components [79]. The reason is that
cholesterol interacts with lipids via hydrogen bonding and can fill the voids between
lipid molecules [80]. The higher the percentage of cholesterol, the smaller the area per
lipid molecule. Furthermore, cholesterol affects the phase behavior of phospholipid
membranes in a concentration-dependent manner [81]. In cholesterol concentrations
less than 25%, the membrane is always in one of the liquid-disordered or solid-ordered
phases, depending on the temperature. However, in higher levels of cholesterol, the

membrane can be found only in one phase called liquid-ordered phase. It is also ev-
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ident that the effect of cholesterol on the structural order of the membrane depends
on the temperature. Above the phase transition temperature that lipids are in the
liquid phase, the addition of cholesterol to the membrane increases the structural
order while below this temperature lipids are in the gel phase and the addition of

cholesterol disrupts the order [81].

1.4.3 Asymmetry in the membrane

Two leaflets of the membrane can have different composition and therefore, different
properties [2|. In the human erythrocyte, for instance, despite an exchange mechanism
(called flip-flop) between the two leaflets, the differences in the lipid compositions in
the two membrane leaflets are maintained. In some other types of cells, the distri-
bution of cholesterol is different in the inner and outer leaflets of the membrane. In
red cells, for example, the percentage of cholesterol in the outer leaflet is 51%, and in
the inner leaflet is 49% [82]. In colorectal cells, cholesterol constitutes about 2.77%
of the inner leaflet and 33.3 % of the outer leaflet in healthy cells. In other words, in
the membrane of healthy colorectal cells, the ratio of [CHL], to [CHL|; is 12, while

it decreases to 5.5 in the membrane of cancerous colorectal cells [73].
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1.5 Temperature and its importance in living sys-
tems

The effect of temperature on chemical reactions and physiological processes is well
known. living objects behave differently at low temperatures. Change in the fluidity
of cell membrane or DNA supercoiling are some examples. Moreover, most of the
biological rates (such as metabolic rate) depend on temperature. For instance, cilial
and flagellar movement rates are temperature dependent since the viscosity of the
environment in which cilia and flagella move changes with temperature. Figure 1-6
is a graphical representation of the model developed by Humphries [4] to demon-
strate the relationship between temperature and biological rate connected to flagellar

movements.
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Figure 1-6: Graphical representation of Humphries model. Increase in temperature
leads to an increase in reaction rates but also a decrease in the cellular and fluid
viscosity. This figure is adopted from reference [4].

In addition, Figure 1-7 demonstrates how biological reaction rates change with

temperature.
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Reaction rate

Temperature

Figure 1-7: Biological reaction rates increase with temperature up to a maximum.
This figure is adopted from reference [5].

In one of the previous studies in our group, the effect of a slight change in tempera-
ture on the amyloid beta formation has been investigated in the absence and presence
of two types of nanoparticles (polystyrene and silica) in the temperature range from
35 to 42°C [6]. Molecular dynamics simulations, as well as experiments, have been
performed to investigate the effect of temperature on the exposure of the amyloido-
genic part of amyloid beta (residues 17-24). The results revealed more exposure of the
sequence 17-24 in the amyloid backbone at higher temperatures. Then, Thioflavin T
assay was used to study the effect of temperature on the amyloid fibrillation in the
presence of nanoparticles. Figure 1-8 represents the obtained results. According to
this figure, even in the absence of nanoparticles increasing the temperature affects
the lag phase in the amyloid fibrillation and makes it shorter. An enhanced effect
is observed in the presence of silica nanoparticles. In the presence of polystyrene,
however, the story is different since it has an inhibitory effect.

It is interesting that a slight change in temperature enhances the effect of both types
of nanoparticles on the fibrillation process, whether this effect is inhibition or accel-

eration.
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Figure 1-8: Effect of slight temperature change on the acceleratory or inhibitory
effect of different nanoparticles on the amyloid fibrillation. This figure is adopted
from reference [6].

1.5.1 Heat transport

Conduction, convection, and radiation are different means of heat transport through
materials. However, at length scales smaller than the energy carriers wavelength or at
time scales comparable with the relaxation time of the carrier the conventional heat
transport theory is not valid. Both heat and mass transport at the scale of nanometer
are dominated by the large surface-to-volume ratio. At the nanoscale, heat transport
via convection requires temperature differences of the order of 10'” K [83]. Energy
exchange through radiation also follows different rules at the nanoscale in comparison
with scales larger than the thermal wavelength [84].

The target of this study is to study the contribution of conduction in heat transfer

at the nanoscale.

Heat transfer in cells

Thermoregulation is done through the variation of blood flow to the body. It is
recognized that blood plays different roles in the thermal balance of the body. Firstly,

it can act as a source to make the body warm or as a sink to cool the body down in
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hyperthermia conditions. Secondly, in case of thermal stress or exercise the cardiac
output increases resulting in an increase in blood flow and an enhanced heat loss via
the skin by sweating [85].

Besides, heat transport in tissues is of great importance in diagnostics and thera-
peutic applications. Therefore, several methods have been studied to model bioheat
transfer in tissues. Some of the well-known methods are Fourier’s law as well as sev-
eral modifications of it such as Maxwell-Cattaneo [86]. Other examples of bioheat

transfer models for blood flow are Pennes and Weinbaum-Jiji bioheat equations [85].

It is evident that the thermal properties of the cell change in pathological condi-
tions [87]. The thermal conductivity of two types of cells has been measured experi-
mentally. Results suggest that irrespective of the cell type, the thermal conductivity
of the dead cells were 6-13% larger than that of the live cells.

In another study, thermal conductivity and diffusivity of two types of cancer cells
(cervical and breast cancer) have been investigated and a 5% increase has been re-
ported in the thermal conductivity within the cancer cell types [88].

A more recent study found statistically meaningful differences between the thermal
conductivity values of normal and diseased cells [89]. According to the same study,
the thermal conductivity of diseased cells changes with the progression of the disease.
Another study suggests that the thermal conductivity measurement is an early-stage
diagnosis for malignant melanoma [90]. Based on the results of that study, the thermal
conductivity of malignant skin lesions was different (lower) than that of healthy cells
and the difference was statistically significant. Furthermore, a correlation between

tumor progression and the lesion thermal conductivity was reported.

Thermal conductivity of the cell membrane

Thermal conductivity, which is a structure-dependent property of the cell membrane,
has been the topic of interest in recent years due to its potential diagnostic applica-
tions. Thermal conductivity measurements of the membrane are of great importance

for engineering new materials, such as nanoparticles, to be used in modern treatment
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techniques. For instance, in a selective treatment method called photothermal cancer
therapy, metal nanoparticles inside the tissue generate heat after being radiated by
an external source. The generated heat then transports to the nearby cells through
the cell membrane [91]. To tune the parameters (such as the power) of the radiative
source properly and to achieve high efficiency, one should have an understanding of
the thermal conductance and resistance of the cell membranes.

To the best of our knowledge, an experimental measurement of thermal conduc-
tivity of the cell membrane was not available until 2019. Only in recent years, lumines-
cence thermometry was utilized for this purpose [7]. In this approach, LiYF,:Ers" /Yhs"
upconverting nanoparticles (UCNPs) were used as heat sources. UCNPs coated with
lipid bilayers immersed in water which is served as a heat sink. Simultaneously, the
temperature of the surrounding water was measured using an immersed thermocou-
ple. The difference between the temperatures of nanoparticles and environmental
fluid was then used to calculate the thermal conductivity of the intermediate lipid
bilayers. Figure 1-9 illustrates this experiment.

According to the results of the same study (Figure 1-10), the thermal conductivity of
the lipid bilayer as a function of laser power density can be described in two different
regimes. In the first regime, up to a specific value of power density, the thermal con-
ductivity of the lipid bilayer decreases, and the difference between the temperature
of UCNPs and the immersed thermocouple (7, — T) increases. In this regime, the
membrane acts as a thermal barrier. In the second regime, the temperature difference
between nanoparticles and fluid decreases, and the conductivity of the lipid bilayer

increases dramatically.
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Figure 1-9: (a) SEM and (b) TEM images of UCNPs coated with Oleates. (c) and
(d) UCNPs capped with lipid bilayers. (e) Uncapped and (f) lipid bilayer capped
UCNPs. (g) The composition of lipid bilayer coating. (h) Structural formulas of the
components of lipid bilayer coating. This figure is adopted from reference |7].
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Figure 1-10: Lipid bilayer thermal conductivity as a function of (a) laser power density
and (b) temperature difference between UCNPs and immersed thermocouple. (c) The
temperature difference between UCNPs and immersed thermocouple obtained from
the calculation (line) and experiment (dots). (d) A one-dimensional model for bilayer
capped UCNPs. This figure is adopted from reference [7].

Although there are only a few experimental measurements of the membrane ther-
mal conductivity available to date, several computational studies have been developed

and utilized for thermal conductivity calculations of lipid bilayers.

Miiller-Plathe et al. performed a series of all-atom simulations to study the heat

transport across a DPPC membrane (8] using the RNEMD algorithm developed by
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them previously [25]. Figure 1-11 shows a schematic representation of their simula-
tion box. They focused on the local thermal conductivity profile of the membrane
and proposed that the tail-tail interface between the two leaflets strongly affects the
value of the thermal conductivity of the membrane. They obtained the local thermal
conductivity profile of the membrane as is illustrated in Figure 1-12. According to
this figure, thermal conductivity is minimum in the area between the two membrane
leaflets where the alkyl chains meet. A possible reason for such a high thermal re-
sistance could be the lack of a covalent bond in the area between the two membrane
leaflets [92]. An asymmetry in thermal conductivity is also reported in the same pa-
per. Later, other studies supported the idea of asymmetric heat conductance through
lipid membranes as well as a discontinuity in thermal conductivity profile where lipid
tails touch [93, 94|. Furthermore, different thermal conductivity coefficients in normal

and lateral directions of a bilayer have been reported [93].
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Figure 1-11: To implement the Miiller-Plathe RNEMD algorithm, simulation box is
divided into several layers. This figure is adopted from reference [8|.
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Figure 1-12: Local thermal conductivity profile of a DPPC model membrane across
z axis obtained by Miiller-Plathe et al. The minimum value of thermal conductivity
is observed in the area between the two leaflets in the lipid bilayer. This figure is
adopted from reference [8].

1.5.2 Thermal rectification

Rectification occurs when thermal transport depends on the sign of temperature gra-
dient in a specific direction. One of the main mechanisms underlying this phenomenon
is the roughness of the surface at contacts. Another mechanism for thermal conduc-
tivity rectification is the usage of different materials at a contact. The reason is that
thermal conductivity depends on temperature and this dependence varies between
different materials.

Thermal rectifiers have several potential applications in various fields. For in-
stance, a thermal rectifier transporting heat in one direction while insulating the
compartments in the other direction is a perfect candidate for cooling purposes in
nanoelectronics.

Rectification has several definitions in different contexts. For instance, Eq. 1.16
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represents a definition provided for solid state rectifiers [95, 96].

kT — k-

TRtk

(1.16)

where k™ and £~ are the thermal conductivity in the forward and backward direc-
tions, respectively. In this definition, thermal conductivity is assumed to be higher in
the forward direction in comparison with the backward direction (i.e., kT is assumed
to be greater than k). This way, an ideal rectifier is the one with a maximum differ-
ence between the forward and backward thermal conductivities (i.e., zero conduction
in one direction and infinite conductivity in the opposite direction) and there will be
no rectification if the thermal conductivity values in forward and backward directions
are the same

If the temperature gradient is the same in the forward and backward thermal
conductivity measurements, the thermal rectification can also be defined as the ratio
of the difference in heat fluxes over the sum of heat fluxes.

Eq. 1.17 represents another definition of thermal rectification.

L+
Tk

€

(1.17)

For thermal diodes, [97], thermal conductivity is defined as a non-negative value

according to Eq. 1.18.
Et
€= 1 (1.18)

In this study, we define thermal rectification as represented in Eq. 1.18.

Thermal conductivity was first observed in 1936 at the interface of Copper/Cuprous
Oxide [98]. A higher thermal and electrical conductivity was reported in the direction
from metal to oxide. Heat is transported in metal and oxide through electrons and
phonons, respectively. At the interface, electrons are scattered with phonons and
transmitted into the oxide or reflected back into the metal. This results in resistance

and a jump in the temperature at the interface. Since the rate of energy transfer

from electrons to phonons is different from the rate of energy transfer from phonons
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to electrons, thermal rectification can happen.

Thermal energy transport at the interfaces consisting of dissimilar materials could
also be rectified. The reason is the change in contact area which leads to the change
in contact resistance.

Different properties of the materials that are in contact with each other at the
interfaces is another proposed mechanism for thermal rectification. The directional
effect, in this case, is due to the thermal strain of the material which has a lower
thermal conductivity.

Thermal rectification also happens at the interfaces between two metals if they
have different work functions. Another mechanism for thermal rectification in bulk is
when the thermal conductivities of two materials forming an interface depends differ-
ently on temperature. It can cause an asymmetry which results in a directional effect.
However, the reason for thermal rectification in nanostructures is different. Although
there have been few experiments at the nanoscale, a large number of theoretical and
computational studies exist in this respect. The proposed molecular mechanisms of
thermal rectification in nanostructures are non-uniform mass distribution and asym-
metric geometry of nanostructures at interfaces.

We explain each of these mechanisms briefly in the following section.

According to the results of an experimental study on the carbon and boron nitride
nanotubes [95], the non-uniform mass distribution along the nanotubes caused a
directional effect along the length of nanotubes. The rectification factors obtained
up to a value of 0.01 and 0.034 for carbon and boron nitride nanotubes, respectively.
The higher thermal conductivity was reported in the direction of high- to low-density.
The reason for rectification in materials that are not homogenous was claimed to be
associated with the collision of solitons which are particle-like objects.

In a previous computational study, nonequilibrium molecular dynamics simula-
tions have been performed on non-uniformly mass-distributed carbon nanotubes using
the Miiller-Plathe algorithm [14]. According to the results, the rectification factors
were in a range between 0.015 and 0.074 with higher conduction in the direction of

low- to high-density which is in contrast with the previous findings by Chang et. al.
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[95].

Asymmetry in the geometry of nanostructures is another mechanism for thermal
rectification at the nanoscale. The thermal conductivity of nanowires has been studied
theoretically and a thermal rectification of 0.43 has been found in the structures with
asymmetric geometry (such as an asymmetric sawtooth) with a smooth boundary in
one direction and a rough boundary in the other direction. A thermal rectification of
0.64 has also been found in asymmetric graphene ribbons using molecular dynamics
simulations.

Simulations of Carbon nanohorns and nanocones showed a directional preference
in the thermal conductivity along the nanostructure with a higher conductivity in the
direction of decreasing diameter. Another study reported that the rectifying effect
of nanocones increases with an increased temperature gradient up to a temperature
gradient of 0.7 normalized by the average temperature of the system. The maximum

value of rectification was reported to be 0.44.
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Thermal rectification in membranes

Previous studies have reported an anisotropic heat transfer along and across the
membranes [92, 93|. Other studies have found that the thermal conductivity of the
membrane changes at different temperatures and temperature gradients across the
membrane as well. Some proposed that lipids with unlike thermal conductivities can
be utilized for building thermal diodes. The use of asymmetric membranes as thermal
rectifiers in microelectronics can be advantageous in several ways. First, lipids are bio-
compatible materials. Second, their transition temperature can be tuned. Third, they
are able to self-assemble. Therefore, there is a high interest in a better understanding

of the thermal properties (especially thermal rectification) of lipid membranes.

Thermal rectification in asymmetric membranes of archaeal was investigated by
Youssefian et al. [9]. They applied molecular dynamics simulations to find the phase
transition temperature, thermal conductivity, and rectification in three different types
of archaeal lipids with the same head group but different tail structures (with and
without cyclopentane rings). The area per lipid molecule was considered as a measure
of the compactness of lipid molecules. According to the results of the same study,
cyclopentane rings are responsible for the high level of molecular packing and the
increase in the thermal conductivity of the membrane. A graphical representation of

their method is provided in Figure 1-13.

The obtained thermal rectification factors of archaeal membranes (using the third
definition of rectification provided in Eq. 1.18) were much lower than the rectification
factors obtained in other studies for carbon nanotubes. The authors related the
results to the smaller size of membranes and the lower temperature gradient across
the membranes. A schematic representation of the thermal rectification model for

the membrane is provided in Figure 1-14.
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Figure 1-13: A graphical representation of the simulation setup used by Youssefian
et al. to study the thermal conductivity of three different archaeal membranes. This
figure is adopted from reference [9].
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Figure 1-14: (a) A schematic representation of a thermal rectifier which is made of
two dissimilar materials A and B. (b) A case in which the thermal conductivity of
material A decreases while that of B increases as a function of temperature. (c) A case
in which thermal conductivities of material A and B decreases as the temperature
increases. Both conditions illustrated in (b) and (c) can result in thermal rectification
in lipid membranes. This figure is adopted from reference [9].

They also found that the structure and the level of molecular packing in the ar-
chaeal membranes affect the phase transition temperature and thermal conductivity
of archaeal membranes. Variation in the thermal conductivity coefficients was ob-

served at different temperatures as well.
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Chapter 2

Interaction between amyloid protein
and the cell membrane

2.1 Introduction

In this study, we take a computational approach to investigate the thermal con-
ductivity of the cell membranes with different compositions: at different levels of
cholesterol and in the presence of APP. The motivation behind this is, on one hand,
the dependence of thermal conductivity on the structure, and on the other hand, the
relation between the level of cholesterol in the membrane and the membrane struc-
ture [79, 81|. To have an understanding of thermal transport in membranes with the
ratio [CHL],/[CHL]; # 1, we extend our study to a model membrane with a ratio of
(CHL],/[CHL|; = 12, such as the one for normal colorectal cells. The idea behind
this comes from a recent investigation on thermal conductivity and rectification of
asymmetric archaeal membrane [9].

Results of a previous study suggest that a slight change in temperature affects the
interaction of the amyloid protein with hydrophobic/hydrophilic surfaces [34]. Con-
sidering the sensitivity of this protein to the temperature, many questions arise about
the reaction of this protein to a temperature gradient and how the local temperature
profile (and therefore thermal conductivity) can be affected by this protein. For the
second part, we study a model DPPC membrane containing the trans-membrane part
of APP. Besides, we consider another DPPC membrane with a horizontally laid APP

on its surface. For these models, we obtain the rectification factor, which is a measure
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of the difference between the thermal conductivity coefficients when heat flows in two

opposite directions through the membrane.

2.2 Methods
2.2.1 Building a membrane/membrane-protein model

A protein-membrane system can be built in different ways. One method is to posi-
tion the protein and lipid molecules randomly in the simulation box and minimize
the system. It is evident that this system self assembles into a lipid bilayer with
the protein aligned inside it. However, this is a lengthy process, specially for large
systems. Another approach is to insert the protein into a pre-equilibrated membrane.
For the insertion of proteins in the membrane, important points must be taken into
consideration including the orientation of protein in membrane and the stability of

the final structure.

Orientation of proteins in membrane

Precise positioning of proteins in the lipid bilayer is so important because it de-
termines the biological activity, intermolecular interactions, stability and folding of
membrane-protein complexes [99]. Because of the limited experimental data provided
by methods such as X-ray scattering, NMR or infrared spectroscopy, spin-labeling and
many others, some attempts have been made to find the right positioning of proteins
computationally. Two of these methods which are frequetly used for membrane align-
ment and protein insertion are LAMBADA and InflateGRO2 [100]. Moreover, there
are several databases such as OPM provideing the user with the correct alignment of

the protein in membrane [99].

Online membrane builders

There are several databases and online servers providing atomistic/coarse-grained
models that can be used to prepare initial structure of any type of membrane (ho-

mogeneous and heterogeneous). These builders also provide the option to insert
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proteins into membranes for protein-membrane simulations [101]. Two examples are

CHARMM-GUI membrane builder [102] and MemBuilder II.

Building the simulation box

Here, we use atomistic models of DPPC lipid bilayer with different levels of cholesterol
(Figure 2-2). Each of the inner and outer leaflets of the membranes contains 36 lipid
molecules some of which are cholesterol molecules corresponding to the given con-
centrations (0%, 5%, 11%, and 50%). It should be mentioned that the concentration
of cholesterol in the inner and outer membrane leaflets are the same in all of these
models. Although the thermal conductivity coefficient of the cholesterol-free DPPC
membrane is reported in the previous computational studies [8, 103], we repeat it here
not only to validate our model but also to have a reference value for the evaluation
of the thermal conductivity of the cholesterol-contained membranes.

As the initial step for all the simulations, the pre-equilibrated structures of lipid
bilayers are obtained from the CHARMM-GUI membrane builder [102].

The equilibration of large structures such as membranes requires extensive simula-
tion time and resources. Therefore, to get advantage of the pre-equilibrated membrane
structures we used CHARMM-GUI membrane builder which utilizes the CHARMMS36
force field parameters. Output files produced by the CHARMM-GUI apply to a
variety of molecular dynamics simulation packages. Here, we use the LAMMPS
molecular dynamics package [104] for all simulations. Interactions between lipid-lipid,
lipid-protein, and lipid-water molecules are treated using the CHARMMS36 force field
[105, 106], and the TIP3P [107] model is used to model water. In simulation, dif-
ferent water models yield slightly different physical properties and non of the water
models can perfectly reproduce all physical properties regarding the experimentally
obtained values. Thermal conductivity of water was obtained with different classi-
cal water models previously [108]. The results revealed that SPC, SPC/E, TIP3P,
and TIP4P water models yield thermal conductivity values of 0.8840.020 W m™!
K1 0.934£0.016 W m~! K=1, 0.8840.019 W m~! K1, and 0.8240.015 W m~! K1,
respectively. However, the thermal conductivity value of 0.684:0.007 W m~! K~! as-
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sociated with TIP5P model is the closest one to the reported experimental value of
0.61 Wm™t KL

To find the thermal conductivity and rectification of the membranes decorated
with the amyloid precursor protein, initial structures of the trans-membrane part of
the APP (PDB code: 2llm |77]) and part of the APP that lies on the membrane surface
(PDB code: 2Ipl [109]) are obtained from protein data bank [110, 111] and used as
the input to the OPM database [112] which provides the orientation of proteins in
the membrane. The oriented structure of the protein is fed into the CHARMM-GUI
membrane builder to be packed with the specific types of lipid molecules. Finally,
the Moltemplate plugin is used to locate the membrane in the right place in the
simulation box and to fill the box with the appropriate number water molecules. Some
water molecules are then replaced by Nat and Cl~ ions to create a physiological salt
concentration in the box [113].

In this study, all the simulations are done in two parts. In the first part, an
equilibrium molecular dynamics simulation is performed, while in the second part,
a nonequilibrium molecular dynamics approach is used to compute the thermal con-

ductivity coefficient.

2.2.2 Equilibrium molecular dynamics

Each system undergoes an energy minimization and equilibration process. To reduce
the large forces due to the possible overlaps between atoms, we run the energy mini-
mization. The conjugate gradient method is used to minimize the initial structures.
Moreover, to relax the structures, all of the membranes undergo the equilibration pro-
cess at a high temperature (450 K) and pressure (170 bar) using Langevin dynamics.
The equilibration procedure starts with a very small time step (0.01 fs) and is done
only for a few steps (1000 steps). We increase time step and the number of steps
gradually to reach the time step of 1 fs. (The equilibration is done for 1000 steps at
0.01 fs, followed by 1000 steps at 0.05 fs, followed by 1000 steps at 0.1 fs, followed
by 2000 steps at 0.2 fs, followed by 5000 steps at 0.5 fs, followed by 100 000 steps
at 1.0 fs.) The equilibration process is then continued by another 1 ns under NPT
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condition at temperature 330 K and pressure 1 bar to stabilize the area per lipid
molecule. The values of the area per lipid are then evaluated with the previously
reported values [78|. The systems are kept at T = 330 K, which is above the phase
transition temperature of DPPC (314 K) [114], and the system pressure is adjusted

to 1 bar using an isotropic Nose-Hoover barostat [115].

Table 2.1: Dimensions of the simulation box and the number of atoms in each box
for different model membranes used in this study.

System Ax | Ay | Az | Number of Atoms
D) A | A
0% Cholesterol 48.0 | 46.0 | 184.2 42 804
5% Cholesterol 47.4 | 45.0 | 186.3 41 756
11% Cholesterol 45.0 | 46.6 | 188.4 41 476
50% Cholesterol 42.2 | 38.8 | 194.2 33 762
Asymmetric Cholesterol 44.4 1 44.4 | 180.0 36 338
APP on the membrane 54.4 | 54.2 | 187.0 57 734
APP across the membrane | 46.6 | 46.6 | 170.6 39 132

To build the appropriate simulation box for the implementation of the NEMD ap-
proach and to have a correct periodic boundary condition along the z axis, the model
membrane and its mirror image are located parallel to each other in the simulation
box which is filled with the appropriate number of water molecules.

Finally, to relax the water molecules and to let the final simulation box find
the correct volume and density, we equilibrate the systems once more (only for a
short period in the order of some hundreds of picoseconds). The same equilibration
procedure as the one applied to the single lipid bilayer is used to equilibrate the
double lipid bilayer in the box. Table 2.1 shows dimensions and the number of atoms

in the final simulation boxes for the model membranes used in this study.

2.2.3 Thermal conductivity calculation (nonequilibrium molec-
ular dynamics)

To implement reverse nonequilibrium molecular dynamics in our study, we use the
Miiller-Plathe technique [25]. In this method, the simulation box is divided into

several layers. The number of layers should be selected such that it yields correct
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performance considering the size of one water molecule. At each time step (or as
many time steps as the user wants), the velocity of the hottest particle in the first
layer in the box is exchanged with the velocity of the coldest particle in the middle
layer of the box. Therefore, the exchange rate is a known, user-defined parameter.
Since the total momentum should be kept conserved, only the particles with the same
mass are allowed to exchange velocity. After a while, the first and the middle layers
of the box changes into the coldest and hottest layers, respectively. Consequently, a
physical heat flow is established from the hot region to the cold region in the box.
After the system reaches a steady-state, the temperature gradient can be measured

and used to calculate the thermal conductivity coefficient using Fourier law.

Implementation of Miiller-Plathe technique

We divide the simulation box into 100 layers. The thickness of one layer in the box
varies between 1.8 A and 1.9 A in our simulations, depending on the height of the
box. Further information about the box dimensions and the number of atoms in
each system is given in table 2.1. Particles from the first and middle (51%%) layers are
chosen for velocity exchange. By convention here, we consider that heat flows in the
forward direction when the first layer of the box (indicated by 75 in Fig. 2-3) has
the lowest temperature, and the layer in the middle (indicated by T} in Fig.2-3) has
the highest temperature. Therefore, the heat flows from the center toward the two
ends of the box. On the other hand, the backward direction is considered when heat
flows from the two ends of the box toward the center. We exchange the velocities
every 0.1 ps. With this exchange rate, we are always in the linear response regime.

Accordingly, thermal conductivity coefficient is calculated using Eq. (2.1).

J 142
-2 _ " Ad 2.1
" vT 2 —‘g (21)
where 99 is the rate of heat flow, dz is the distance between hot and cold layers
dt Y

in the box, dT is the difference between temperatures of hot and cold layers, and A
is the cross-sectional area. Since heat flows in two opposite directions, one-half of the

heat flow should be used for the calculation of the thermal conductivity coefficient
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(k).
Estimation of thermal rectification factor

Thermal conductivity coefficients are obtained in forward and backward directions

and used to calculate the thermal rectification factor using Eq. (2.2).

_ |rr—
Kp

€

(2.2)

where k; and k; are the coefficients when heat flows in the forward and backward

directions, respectively.

2.2.4 Block averaging

Block averaging is a technique to find a correct estimate of the error in the time
average of quantities that are obtained from computer simulations. According to
equation 2.3, the true standard error is achieved when data in all the blocks are
statistically independent [116, 117].

On

BSE(f.n) = A (2.3)

where M is the number of blocks, n is the length of blocks, and f is the quantity

for which the average and standard error are calculated. If the length of blocks is
shorter than the correlation time, blocked standard error (BSE) under-estimates the
statistical error because of the correlation between blocks. The true uncertainty is
obtained when BSE no longer changes with block length.

To calculate the thermal conductivity coefficient, we apply the block averaging method,
obtain the mean value of the thermal conductivity coefficient in each block, and find
the standard error in estimates of the mean based on the different block lengths. As
Figure 2-1 shows, in our study the blocked standard error almost reaches a plateau
for block lengths around 1000 picoseconds. Therefore, we choose blocks with one

nanosecond length for the calculation of thermal conductivity coefficients.
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Figure 2-1: Blocked standard error as a function of block length. The nonlinear least
square (NLSQ) fit to the data indicates that BSE almost reaches a plateau for block
lengths around 1000 picoseconds.

2.3 Results

2.3.1 Thermal conductivity of DPPC membrane at different
levels of cholesterol

To investigate the effect of cholesterol on the structure of DPPC membrane, the
area per lipid molecule is obtained after the equilibration phase. An increase in
the level of cholesterol in the membrane results in a reduction in the area per lipid
molecule (Figure 2-4 and table 2.1). It is reported in previous studies as well [118,
79]. Furthermore, our findings suggest that the membranes with more cholesterol
molecules have a higher thickness, which is in agreement with previous reports [119,

120).
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Figure 2-2: Pre-equilibrated DPPC lipid membranes with different cholesterol con-
centrations: (a) 0% cholesterol, (b) 5% cholesterol, (¢) 11% cholesterol, and (d) 50%
cholesterol. Each membrane leaflet consists of 36 lipids including DPPC and choles-
terol molecules. DPPC molecules are represented with lines in green and cholesterol
molecules are represented with ball-and-stick in blue and purple.
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Figure 2-3: Physical and nonphysical heat flow across the model membrane with 50%
cholesterol concentration. The Miiller-Plathe NEMD algorithm applies a nonphysical
heat flow between two layers of the simulation box, specified with T; (hottest layer)
and Ty (coldest layer) which results in a physical heat flow across the lipid bilayers.
Water layers with the highest and the lowest temperatures are colored in light red
and light blue, respectively. In the two lipid bilayers, green lines and purple beads
represent DPPC and cholesterol molecules, respectively.
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Figure 2-4: Area per lipid molecule for DPPC membranes containing different con-
centrations of cholesterol. The numbers on the horizontal axis indicate the percentage
of cholesterol in each membrane leaflet.

Implementation of the Miiller-Plathe algorithm leads to the creation of hot and
cold slabs across the membrane. Temperatures of hot and cold slabs reach a steady
state after some hundreds of picoseconds (Figure 2-5). In our study, we do all the

calculations on the data gathered after the first nanosecond of the simulations.
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Figure 2-5: Implementation of Miiller-Plathe algorithm results in the formation of
hot and cold regions in the box. This figure represents the first 2 ns of the NEMD
simulation. This plot implies that the temperature of the hot and cold slabs reaches
a steady state in hundreds of picoseconds after NEMD starts with an exchange rate
of 0.1 ps. All model membranes we use in this study have similar plots to this one.

The density and temperature profiles of the system along the z axis (Figure 2-6)
suggest that in the hottest and coldest layers of the box there are only water molecules.
It is worth mentioning that the two jumps in the temperature profile (Figure 2-6),
one in the region between slab number 20 and 30, and the other in between slab
number 70 and 80, match exactly the two minimums in the membrane density profile
indicating the areas between the two membrane leaflets where lipid tails touch [8].
Density profiles in Figure 2-6 indicate the density of particles before applying NEMD
to the system. After NEMD is applied to the system, there is a slight change in the
density of water with a higher density in the cold region and a lower density in the

hot region. However, there is no change in the density of lipids.
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Figure 2-6: Densities of water, lipid, and the total particle density along the z axis
are represented on the left vertical axis. The temperature of each layer when the
system reaches the steady state is also represented on the right vertical axis. The
overall density and temperature profiles of all model membranes we use in this study
are similar to this one.

Temperature profiles of the lipid bilayers along x and y axis are averaged over all

membrane and illustrated in Figure 2-7 and 2-8.
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Figure 2-7: Temperature profile of the lipid bilayers in three dimension for the mem-
brane containing 50% cholesterol. In this figure energies are exchanged every 0.2

ps.
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Figure 2-8: Temperature profile of the lipid bilayers in three dimension for the mem-
brane containing 50% cholesterol. In this figure energies are exchanged every 0.5

ps.

We report the value of the thermal conductivity of the DPPC membrane to be
0.574£0.01 W m~! K~! at AT=74 K, which is in good agreement with the compu-
tationally predicted value (0.514+0.04 W m~! K=! at AT=75 K) by Yousefian et.
al. [103]. To the best of our knowledge, the only experimentally measured value re-
ported very recently is 0.20£0.02 W m~! K~! obtained for a membrane composed of
DOPA:DOPC:cholesterol (with the ratio of 64:7:29) at AT=20 K [7]. The difference
in the reported values of the membrane thermal conductivity is not only due to the
different membrane compositions but also because of the difference in the applied
temperature gradients across the membrane |7, 103|. For instance, in a previous com-
putational study, the thermal conductivity of 0.25 W m~! K~! was reported for a
DPPC bilayer at AT=12 K [92].

According to the results of the t test (Table 2.2), the presence of cholesterol in
the membrane, especially in high concentration, increases the thermal conductivity of
the lipid bilayer (see Fig. 2-9). The reason can be partly explained by the increased
structural order in the membrane (in liquid phase) due to the addition of cholesterol
that is in total agreement with the previous reports [81]. These results suggest that

the increase in the thermal conductivity of each two membranes (containing different
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levels of cholesterol) is statically significant (significance level=0.05), except for the

two membranes with cholesterol concentrations 5% and 11%.
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Figure 2-9: Thermal conductivity coefficients of lipid membranes with different con-
centrations of cholesterol. Simulations are divided into several 1 ns time blocks and
the thermal conductivity coefficient is obtained in each block. The mean value (+
standard deviation) written on top of each bar is obtained using block averaging
method. Error bars show the value of standard deviation divided by the square root
of the number of blocks.

Table 2.2: Result of the t test for membranes with different levels of cholesterol.

Systems ~ Mean diff. Std. err. diff. t df  Sig. (2-tailed)
0%, 5% -0.016 0.002 -7.692  38.0 p < 0.001
0%, 11% -0.019 0.002 -10.958 42.0 p < 0.001
0%, 50% -0.032 0.002 -17.346  43.0 p < 0.001
5%, 11% -0.003 0.002 -1.161  36.0 p — 0.241
5%, 50% -0.015 0.002 -6.546  37.0 p < 0.001
11%, 50% -0.013 0.002 -6.589  41.0 p < 0.001

In Miiller-Plathe technique, a specific amount of kinetic energy is accumulated in
each simulation step which is due to the exchange of velocities. If the velocities are
exchanged slowly enough, the accumulated kinetic energy will be a linear (monoton-
ically increasing) function of time. Otherwise, the system will never reach a steady

state. The slope of this line gives the rate of heat flow.
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To investigate the effect of different temperature gradients on the value of thermal
conductivity and to check whether we stay at the linear response or not, thermal
conductivity is calculated at three different temperature gradients for the membrane
containing 50% cholesterol. The value of thermal conductivity at AT=21 and AT=50
is equal to 0.596 and 0.6, respectively.

Figure 2-10 shows the rate of heat flow as a function of AT indicating that even at
high AT the system stays (with a good approximation) in the linear response regime.
Therefore, the value of thermal conductivity in our simulation does not depend on

the swap frequency.
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Figure 2-10: Rate of heat flow as a function of AT. The blue dots are obtained from
MD simulations by swapping every 500, 200, and 100 time steps. A larger AT is
obtained at higher swap frequencies. The dashed red line is the linear fit to this data.
In all three simulations the thickness and cross-sectional area of the surface through
which heat is transported are the same.

As we mentioned previously, in Miiller-Plathe technique total linear momentum
and total energy of the system are conserved because the simulations are done in an

NVE ensemble without any thermostat.
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2.3.2 Hydration of lipid headgroups

Results of a previous experimental study [121] suggest that cholesterol affects membrane-
water interaction by increasing the water penetration to the hydrophilic part of the
membrane. Since the important role of the membrane-water interface in determining
thermal conductivity of membrane has been emphasized in the literature, we inves-
tigate the hydration of lipid head groups in two of our model membranes: in the
cholesterol-free membrane and in the membrane containing 50% cholesterol. We ob-
tain the radial distribution function of water oxygen around the nitrogen atom of
DPPC head groups (Figure 2-11). According to the results, we conclude that the

hydration increased upon the inclusion of 50% cholesterol to the membrane.
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Figure 2-11: Radial distribution function (RDF) of water oxygens around the nitro-
gen atom of DPPC headgroups for two membranes: the cholesterol-free membrane
(dashed blue curve) and the membrane containing 50% cholesterol (solid red line).
A comparison between the peak values of the two RDFs reveals that the lipid head
groups get more hydrated as a result of the incorporation of cholesterol into the
membrane.
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Thermal conductivity and rectification of a DPPC membrane with differ-
ent concentrations of cholesterol in the upper and lower leaflets

The asymmetric concentration of cholesterol in the membrane leaflets has been dis-
cussed by many studies [122, 123]. To achieve more realistic results, this asymmetry
should be taken into account in membrane models. In this study, we use a pre-
equilibrated membrane with asymmetric cholesterol concentration in the two leaflets.
Our model membrane contains 33.3% cholesterol in the outer leaflet and 2.7% choles-
terol in the inner leaflet and the physiological salt concentration (0.15 M). We study
the thermal conductivity of this model membrane in a forward and backward direction

(Fig. 2-12).
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Figure 2-12: Thermal conductivity coefficients for a DPPC membrane whose upper
and lower leaflets contain different numbers of cholesterol molecules. Thermal con-
ductivity values are obtained for this model in the forward and backward directions.

The thermal conductivity coefficients obtained in both directions for this asym-
metric model membrane are less than the values obtained for our aforementioned
symmetric models. The asymmetry in the structure of the membrane leaflets might
be the reason for the reduction in the thermal conductivity of the membrane. As a
similar case, we refer to a previous computational study in which the thermal conduc-
tivity of the DPPC membranes was obtained at different temperature gradients. In

the same study, the lowest value of thermal conductivity was reported for a membrane
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whose leaflets were in two different temperatures, one below the phase transition tem-
perature and the other above it [103|. One of the membrane leaflets in the gel phase
and the other in the liquid crystalline phase reveal a form of asymmetry between the
two membrane leaflets. Our asymmetric membrane has a rectification factor of 0.008
which is much lower than the previously reported values for archaeal membranes [9].

Besides normal asymmetry in the cholesterol content of the two membrane leaflets,
a very recent study suggests that external thermal gradients can create asymmetric
cholesterol distribution between the two membrane leaflets [124]. The results of the
same study indicate that the flip-flop rate of cholesterol, which is a rather small
and less polar molecule in comparison with other lipid molecules, is in the order of
microseconds or milliseconds. Elsewhere, the cholesterol flip-flop rate is reported to
be between 80 ns and 250 ns [123|. However, the timescale of our simulations was
much lower (around 20 ns) than the reported values. Therefore, there is almost no

chance to observe a cholesterol flip-flop in our simulations.

2.3.3 Effect of amyloid precursor protein on the thermal con-
ductivity of DPPC membrane

To investigate the thermal conductivity of the membrane in the presence of APP,
we consider two separate cases (Figure 2-13). In the first model (Figure 2-13(a)),
the transmembrane domain of APP inserted into the membrane, and in the second
one (Figure 2-13(b)), part of APP laid on the membrane. For both cases, we study
thermal conductivity in the forward and backward directions. Our results suggest
that in both cases, the thermal conductivity coefficients in the forward direction are
different from the ones obtained in the backward direction (Figure 2-14). Table 2.3
represents the values of thermal conductivity coefficients and the rectification factors

for both cases.
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Table 2.3: Thermal conductivity coefficients (k) and rectification factors (e) are re-
ported at specified temperature differences for the two illustrated models in Fig. 2-12.
In the third and fourth columns, the standard deviations (SD) are specified inside the

parenthesis.

System Direction AT (SD)K & (SD) Wm™ Kt ¢

Forward  76.0 (1.5) 0.534 (0.005)

(
& Backward ~ 74.9 (1.2) 0512 (0.005) V43
X Forward  62.0 (1.1) 0549 (0.005) .
Backward ~ 62.5 (0.9) 0.568 (0.005) '
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Figure 2-13: Two membrane-protein systems. In system a, the transmembrane do-
main of APP is packed with DPPC molecules. In system b, part of the APP laid
down on the lipid membrane. Lipids, protein, and water molecules are colored in
green, purple, and cyan, respectively.

2.3.4 Rectification in the thermal conductivity of the cell mem-
brane as a result of membrane-protein interaction

We applied a t test to the values of thermal conductivity coefficients in the forward

and backward directions for the two membrane-protein systems. According to the

60



results of this test (Table 2.4), the values of the thermal conductivity coefficients have
a significant difference when measured in the forward direction than the backward
direction. The rectification factors we obtain for the two membrane-protein systems
are comparable with the previously reported rectification factors for other types of

cell membranes (between 0.028 and 0.091) [9].

Table 2.4: Result of the T-test for thermal conductivity coefficients in the forward
(F) and backward (B) directions for the two membrane-protein systems illustrated in
Fig. 2-12.

Name Mean diff. Std. err diff. t df  Sig. (2-tailed)
System a (F,B) 0.022 0.002 11.299 28.0 p < 0.05
System b (F,B)  -0.019 0.001  -13.856 42.0 p < 0.05
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Figure 2-14: Thermal conductivity coefficients of the membranes with amyloid pre-
cursor protein in the forward and backward directions. The two leftmost columns
show the value of thermal conductivity for system a in Figure 2-13) and the two

rightmost columns show the value of thermal conductivity for system b in Figure
2-13)
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2.4 Conclusion

In this part of our study, we applied a reverse nonequilibrium molecular dynamics
approach to obtain the thermal conductivity of atomistic models of DPPC mem-
brane with different compositions. We obtained the thermal conductivity of DPPC
membrane at four different cholesterol levels. Our study finds a positive correlation
between the concentration of cholesterol in the membrane and the membrane thermal
conductivity. We relate the increase in the membrane thermal conductivity to the
increased structural order in the membrane upon the addition of cholesterol. It is
stated elsewhere that the hydrophobic effect of cholesterol is responsible for packing
the hydrocarbon chains of lipids (hydrophobic part of lipid molecules) and there-
fore, increasing the order in the membrane [125]. The results obtained from our
model membrane with an asymmetric distribution of cholesterol in the two mem-
brane leaflets further support this idea. The lower value of thermal conductivity of
the asymmetric membrane in comparison with the symmetric membranes indicates
the close relationship between the structural order in the membrane and the mem-
brane thermal conductivity. Furthermore, our simulations suggest that the inclusion
of cholesterol to the membrane enhances the hydration of phospholipid headgroups.
The increased density of water molecules at the lipid-water interface enhances the
membrane-water interactions which can partly compensate the sharp drop in the lo-
cal thermal conductivity profile at the lipid-water interface reported in a previous
study [8].

It is also evident that cholesterol increases the van der Waals interactions between
the hydrocarbon chains of lipids. The increased van der Waals interaction could be
responsible for the increased thermal conductivity in the lipid membrane. This is
analogous to the increased thermal conductivity of simple fluids at a high density
which is mainly due to the repulsive intermolecular forces [126, 127].

For the membranes decorated with APP, we observe a significant difference be-
tween the thermal conductivity coefficients in the forward and backward directions.

Consequently, there is a rectification effect when heat flows in opposite directions
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through the membrane-protein system. Many believe that the rectification depends
on the temperature difference across the membrane [9]. However, the rectification
factors we obtain for the membrane-protein models are more comparable with the
previously obtained values (between 0.028 and 0.091) for asymmetric archaeal mem-
branes at AT=20 K [9] than the ones obtained (between 0.1 and 3.5) for carbon
nanotubes at AT=100 K [128, 129|. We conclude that thermal rectification is more
affected by the structure than the temperature gradient, but further studies are re-
quired to prove it.

The results of this study shed light on the selective treatment methods, such as
photothermal cancer therapy [130]. According to what we report for the specific case
of colorectal cells here, normal cells with a large ratio of [CHL],/[C' HL]; and a high

thermal resistance, can survive during the treatment process.
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Chapter 3

Interaction between A3(16-23) and
the amorphous silica surface

3.1 Introduction

Amyloid formation is known as a multilevel process starting with oligomerization or
nucleation and continuing to fibril growth or elongation. Conventional experimental
techniques such as X-Ray crystallography and nuclear magnetic resonance imaging
are not able to characterize fibrils morphologically [131].

In this respect, MD simulation can help as a connection between the macroscopic
experimental observations and the microscopic events. However, the sufficient sam-
pling of large systems and slow processes (such as nucleation) at the experimentally-
relevant timescales of microseconds and milliseconds is still a real challenge even with
today computational facilities [132].

In this study, we are going to quantify the behavioral changes of a sequence of
amyloid beta (1-42) peptide near the silica surface. This sequence is known to be
the hydrophobic core of amyloid beta (1-42) peptide and therefore, seems to play an
important role in amyloid formation. Our goal is thus to provide some insights into
the changes in conformation that this small segment experiences near the surface of
silica and also the specific binding modes that it can take. The results can be utilized
for a better understanding of the underlying mechanisms of amyloid formation near
the silica surface.

Investigating the binding of a sequence of amyloid beta (1-42) peptide (KLVFFAED)
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to silica is motivated by recent experiments with transmission electron microscopy
suggesting that silica nanoparticles can accelerate fibrillation of amyloid chains and

this effect is sensitive to temperature [6].

3.2 Methods

We perform molecular dynamics simulations using the GROMACS 5.1 software [133,
134, 135, 136| on a segment of the amyloid beta peptide 16-23 (KLVFFAED) consist-
ing of 8 amino acids in contact with the water amorphous silica interface. The size of
the simulation box in our study is 6.56 nm by 6.57 nm in the x-y directions respec-
tively and 8.70 nm in the z direction. The system consists of 7718 water molecules
and counter ions (Na™ and CI) to create the 0.15 M salt concentration. The in-
teraction potentials between the amyloid peptide and water were obtained using a
combination of GROMOS43al [137, 138] and SPC/E [139] while the interaction po-
tentials between the water and silica are adopted from a previous parametrization
of the silica-water surface 64, 65| which was further extended to model biomolecules
near the silica surface [1, 66]. In summary, the potential was calibrated to reproduce
binding energies obtained from quantum chemistry calculations on molecular groups
that are important for biomolecules. For more details on the form of the potential
and how it was developed the reader is referred to the relevant papers.

To integrate the equations of motion of all atoms in the system, the leap-frog
algorithm is chosen [140]. The Lennard-Jones cutoff distance is 1.0 nm for the van
der Waals interactions and particle-mesh Ewald (PME) method with a grid spacing
of 0.12 nm and a 4 * order spline interpolation is used to calculate electrostatic
interactions in our systems [141, 142]. Periodic boundary conditions are also applied
to all of the simulations. Simulations are done in the NVT ensemble and equilibrated
at 300 K using the velocity-rescale thermostat [143].

As mentioned earlier, one of the goals of our study is to investigate how the silica
surface can change the conformation of the amyloid-beta segment and to understand
the underlying binding modes that occur when the peptide comes close to the surface.

In order to understand these effects, we first simulated KLVFFAED in bulk water in
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the absence of a silica surface using a periodic box with cell dimensions 5.47 nm by
5.47 nm by 5.47 nm. The total simulation time for the single peptide in water is 50
ns. We monitored the radius of gyration (R,) throughout the trajectory (Figure 3-1).
The R, fluctuates between 0.5 nm and 0.8 nm. From the simulation of peptide in

bulk water, we randomly choose 12 snapshots each with a different R,.
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Figure 3-1: Radius of gyration of peptide throughout the trajectory.

The amorphous silica slab we simulated is characterized by a thickness of 3.4 nm
containing a total of 11196 atoms (including 192 surface silanol groups, 40 geminal
silanol groups and 72 dissociated silanol groups). The surface charge density is -
0.82 e/nm? typical to neutral pH. In this study, we do not model the effect of pH.
Therefore, all the simulations are done in neutral pH. Figure 3-2 shows peptide with
its residues and also a top view of the silica slab. In this figure, different regions on

the silica surface are specified.
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a Leucine Valine Alanine Aspartic acid
(LEV) (VAL) (ALA) (ASP)

Lysine  Phenyl Phenyl Glutamic acid

(LYS) (PHE1)  (PHE2) (GLU)
SIL GEM OMB OoXB

Figure 3-2: (a) The sequence of amyloid beta (1-42) peptide that we used with its
8 residues. Different colors distinguishes between different atoms. Carbon, nitrogen,
oxygen, silicon, and hydrogen atoms are presented in cyan, dark blue, red, yellow,
and white, respectively. Four groups of silica are illustrated below the peptide. Ab-
breviations are explained in the main text. (b) Top view of the surface of silica slab.
Hydrophobic and hydrophilic regions are presented in blue and gray, respectively.

Besides considering different conformations, we also identify four chemical envi-
ronments on the surface [Figure 3-2 (b)]: a zone rich in silanol groups (SIL), a zone
rich in geminal silanols (GEM), and finally a zone with more oxygen atoms of the dis-

sociated silanol groups (OMB) and a zone empty of charged groups in which siloxanes
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(OXB) are the most available groups on the surface (hydrophobic zone). We prepare
different initial configurations by placing each of the randomly oriented 12 peptide
conformations above the four aforementioned zones within the Debye screening length
of our system (which is approximately 0.5 nm for the chosen ion concentration). These
simulations are conducted for a total of 50 ns each. Thus in total, 48 simulations were
conducted yielding a wide assortment of different conformations and binding modes
that the peptide takes on near the silica surface.

Visual inspections as well as the calculations of the end-to-end distance and the
orientation of the peptide relative to the surface normal reveal conformational changes
of peptide as it moves toward the surface. End-to-end distance has been widely used
as an indicator of chain conformation and flexibility in several studies [144, 145]. The
orientation of the peptide on the surface, provides information about the peptide
mobility and is reported to be pH dependent [146].

We thus focused on using these two coordinates to catalog the different confor-

mations that the peptide adopts near the surface using a hierarchical cluster analysis

based on the Ward method [27].

3.3 Results
3.3.1 Conformations of peptide near the silica surface

In all but one of the 48 simulations conducted, the peptide moves to the surface
and forms interactions with the different chemical groups at the interface. In the
majority of our simulations, the peptide comes to the surface in the first 10 ns as
is represented in Figure 3-3. Initial and final conformations of the peptide from 4

different simulations are illustrated in Figure 3-4.
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Figure 3-3: Peptide center of mass distance from the surface. Because of the surface
roughness, the mean value of the z coordinates of silanol and geminal oxygen atoms is
considered as the surface line. Snapshots (a) to (f) show the movement of the peptide

toward the silica surface.
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Figure 3-4: Initial (left hand side) and final (right hand side) conformations of the
peptide in different simulations.

Figure 3-5 is the scree plot obtained after applying Ward’s method to cluster our
48 systems based on two features of peptide conformation (end-to-end distance and

the angle between surface normal and the vector associated with the N-C terminus
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dipole). According to this plot, any number at which a sudden increase happens can
be subtracted from the total number of cases to provide the appropriate number of
clusters that should be chosen. Here, we see it happens at 45 which leads to three (48-
45) clusters to be chosen. This is in agreement with what is inferred from dendrogram
illustrated in Figure 3-6. This plot indicates that the largest between-cluster distance

occurs when there were three different clusters.
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Figure 3-5: Scree plot

Broadly speaking the conformations associated with each of the three clusters
are visually illustrated in Figure 3-7. In cluster (1), the peptide is bent; in cluster
(2), it has an extended form, while finally in cluster (3), it is extended but with the
C-terminus hanging into the solvent - essentially it is perpendicular to the surface.
According to Figure 3-8, the relative percentage of the three clusters 1, 2 and 3 is
35.42%, 35.42%, and 29.17%, respectively.
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Figure 3-6: Dendrogram
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Figure 3-7: Final conformations of peptide are divided mainly into three clusters.
Horizontal axis shows the peptide end-to-end distance and vertical axis is the angle
between peptide N-C terminus dipole and z axis averaged over the last 10 ns of each
simulation. Snapshots number (i), (ii), and (iii) are top-views of the peptide lying on
the silica surface. Other snapshots show peptide from side view. Each point in this
plot is related to one simulation.

Figure 3-8: Pie plot indicating the percentages of conformations in each of the clusters
in Figure 3-7.
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The peptide is made up of several different chemical groups that can interact
with the silica surface: the N-terminus consisting of an NH3" group, the hydrophobic
phenylalanine rings, the side-chains of the lysine also consisting of NH3" groups and
finally the negatively charged carboxylate (COO") groups. In order to determine the
dominant binding modes on the silica surface, we calculate the radial distribution

functions for the several groups of the peptide and the silica surface.

3.3.2 Binding modes of peptide

The peptide can bind to the different chemical groups on the silica surface shown
earlier in Figure 3-2 in various different ways. In order to better quantify the relative
proportion of the different binding modes on the surface, we calculated RDFs for the
chemical groups of the peptide and the silica surface. Figures 3-9, 3-10, and 3-11 show
the radial distribution functions of interaction neighbors involving different residues
of the peptide and silica groups for a selection of final conformations of the peptide
(represented in figure 3-7) in each cluster. RDFs reported here are averaged over the
last 20 nanoseconds of the simulation time. Figure 3-9 show that in all three members
of cluster 1, the lysine residue in the peptide N-terminal mostly binds to the silanol
and geminal groups and to a less extent to the OMB groups. This can be due to
the fact that in our model surface, the number of OMB groups are less than the
number of silanol or geminal groups. In all three members of cluster 1, the binding of
glutamic and aspartic residues (in the peptide C-terminal) to surface silanol groups
is interesting but non-trivial. Moreover, in all three cluster members, at least one of
the phenyl groups comes in close contact with the siloxanes. Therefore, a very nice
combination of electrostatic and hydrophobic interactions are at work in binding of

the peptide to the surface in cluster 1.
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Figure 3-9: Radial distribution functions for different residues of the peptide being
near the specific groups on the silica surface. In this figure, RDFs with different colors
are calculated for the selected conformations in Cluster 1. To find the abbreviations
of residue names and surface groups refer to Figure 3-2 and to find the selected
conformations in each cluster see Figure 3-7.

for the members of cluster 2, not only N-terminal and C-terminal of the peptide
make contact with polar and charged surface groups, surface geminals can bind to

aspartic and glutamic residues. This is the case specifically for member (ix) in cluster

2.
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Figure 3-10: Radial distribution functions for different residues of the peptide being
near the specific groups on the silica surface. In this figure, RDFs with different colors
are calculated for the selected conformations in Cluster 2. To find the abbreviations
of residue names and surface groups refer to Figure 3-2 and to find the selected
conformations in each cluster see Figure 3-7.
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In comparison with clusters 1 and 2, fewer residues are found in close contact with
silica groups in cluster 3. for all the three members of cluster 3, peptide make contacts
via its N-terminal lysine with (at least one of) the silanol, geminal, and dissociated
silanol groups. In this case, hydrophobic residues as well as the C-terminal of the

peptide have a negligible contribution in binding.
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Figure 3-11: Radial distribution functions for different residues of the peptide being
near the specific groups on the silica surface. In this figure, RDFs with different colors
are calculated for the selected conformations in Cluster 3. To find the abbreviations
of residue names and surface groups refer to Figure 3-2 and to find the selected
conformations in each cluster see Figure 3-7.
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Figure 3-12: Radial distribution functions for different residues of the peptide being
near the specific groups on the silica surface. In this figure, RDFs with different colors
are averages of the RDFs for the selected conformations in each Cluster. To find the
abbreviations of residue names and surface groups refer to Figure 3-2 and to find the
selected conformations in each cluster see Figure 3-7.

Figure 3-12 shows the same RDF's which are averaged over the selected three con-
formations in each cluster. These results are rather interesting since they point to the
important role of electrostatic and hydrophobic interactions in binding in clusters 1
and 2, with an enhanced contribution of electrostatic interactions at the peptide C-
terminus in cluster 2. On the other hand, electrostatic interactions at the N-terminus
of the peptide are the main drive for binding in cluster 3. In addition, hydrophobic
contacts are formed mostly in clusters 1 and 2. We also observe that the hydrophobic

phenylalanine groups can be buried in hydrophobic regions of the silica surface.

Interestingly, the positively charged lysine groups tend to form more contacts with
the hydroxyl groups (OH in both SIL and GEM groups) rather than with the depro-
tonated (OMB) ones. This may originate in part by the constraints that the peptide
conformation takes on at the interface. To a less extent, we also observe interac-
tions involving the negatively charged aspartic and glutamic acid groups. Similar to
previous studies, we also find that the binding of bimolecules to the surface of silica
involves a complex mix of hydrophobic and electrostatic interactions [1|. This is con-

sistent with recent experimental results showing that the adsorption mechanism of
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intrinsically disordered p53TAD onto silica nanoparticles involves the combination of
both electrostatic and hydrophobic interactions [31].

The preceding results seem to indicate that peptide binds to the silica surface as a
result of electrostatic and hydrophobic interactions. However, the RDF calculations
do not provide any insight into the strength of the interactions. To this end, one
should calculate the energy of binding using Steered-MD or experimental methods

namely adsorption isotherms.

Role of water in hydrophobic interactions

The orientation and hydrogen-bonding network of water near the surfaces with vari-
able charge and hydrophobicity was reported to be different from those of bulk water
[10]. Near the surfaces, the ideal orientation for water molecules is the one increasing
the possibility of forming hydrogen bonds with both surface and bulk water, while
decreasing the probability of unfavorable dipole-dipole interactions. The commonly
used order parameter to evaluate the orientation of water near the surface is the tilt
angle of water with respect to the surface which is defined as the angle between the
axis of symmetry of water molecule and the normal to the surface (Figure 3-13). The
advantage of using this order parameter is that the average value of the cosine of tilt

angle can be assessed by the sum-frequency generation (SFG) experiments.

surface :

x/ I)*

Figure 3-13: Tilt angle of water molecule is the angle between the water symmetry
axis and the surface normal. This figure is adopted from reference [10].

The results of a previous study show that in the presence of peptide, the interfacial

water molecules (i.e. the water molecules between the peptide and the surface) are
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ordered differently, depending on the hydrophobicity of the surface [10]. Moreover,
it was revealed that a highly ordered interfacial water layer is formed near the hy-
drophilic surfaces while interfacial water molecules near the hydrophobic surfaces are
highly excluded.

Results of the same study indicate that water molecules near the hydrophilic surfaces
are oriented such that their oxygen atoms are upward, pointing toward the peptide,
and their hydrogen atoms are downward to the surface. Interestingly, the water
molecules beneath the peptide and very close to it have the same orientation (i.e.
water oxygen points toward the peptide and hydrogen atoms point to the surface).
The authors believe that the similarity between the orientation of water molecules
beneath the peptide and above the hydrophilic surface has a positive impact on the
peptide-surface interaction because water molecules do not have to change their orien-
tation when peptide comes to the surface. In this case, peptide usually form indirect
contacts with the surface through the ordered interfacial water layer.

The same study indicated that above the hydrophobic surfaces, the water molecules
are highly excluded and their orientation are different from the orientation of water
molecules beneath the peptide. Therefore, the peptide and surface compete for re-
orienting the interfacial water molecules. This was mentioned as a possible reason for
the exclusion of water from this region [10]. Consequently, the peptide comes very
close to a hydrophobic surface and makes direct contacts with it.

In our study, we obtained the distribution of the number of water molecules form-
ing closed rings in bulk water (Figure 3-14), in a 5 A distance from the hydrophobic
(Figure 3-14a) and hydrophilic residues of the peptide, and in a 5 A distance from
the silica surface (Figure 3-15b). Our results reveal that in bulk water, the closed
water rings mostly consist of 6 water molecules while those formed near a hydrophilic
residue (ASP) consist of 4 water molecules and those formed near a hydrophobic
(PHE) residue consists of 5 water molecules. Since the closed water rings near the
silica surface also consist of 5 water molecules, we can conclude that the interaction
of phenyl with the surface is favorable since it dictates no essential change in the

structure of water rings near the surface.
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Figure 3-14: Ring analysis of bulk water in the absence of peptide and surface. This
figure reveals that the number of water molecules forming a closed ring in bulk water
is mostly 6.
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Figure 3-15: Results of the ring analysis reveal that the number of water molecules
forming a closed ring is different near the (a) hydrophobic residues, (b) hydrophilic
residues, and (c) above the silica surface.

Role of peptide in the structural differences of interfacial water molecules
near the hydrophobic and hydrophilic surfaces

To understand the role of peptide in the structure of interfacial water molecules,

Krause et al. evaluated the trapped water molecules under the hydrophobic and hy-
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drophilic residues of KLa14 peptide and found similar behaviors. The authors argued
that even a hydrophilic residue such as lysine consists of hydrophobic atoms. In ac-
cordance with the idea of Kapcha et al. [147], the authors assessed the trapped water
molecules under the hydrophobic and hydrophilic atoms. By convention, they consid-
ered a nitrogen, an oxygen, or a hydrogen atom connected to an oxygen or a nitrogen
atom as a hydrophilic atom and a hydrogen or a carbon atom connected to a carbon
atom as a hydrophobic atom. Their results reveal a high density of water between the
surface and hydrophilic atoms of the peptide while no water molecule exists between
the surface and hydrophobic atoms. Therefore, the peptide takes advantage of the
water molecules beneath the hydrophilic atoms to make contact with a hydrophilic

surface while it binds directly to the hydrophobic surfaces via its hydrophobic atoms.

In this study, we observe a combination of direct and indirect contacts between the
peptide and the silica surface which is mainly due to the variety of hydrophobic and
hydrophilic regions on the silica surface. Figure 3-16 represents the indirect contacts
between the hydroxyl groups (hydrophilic atoms) of the surface and hydrophilic atoms
(hydrogen atoms of lysine residue) of the peptide. However, in this study we only

quantify the number of direct contacts between the silica and peptide atoms.
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Figure 3-16: Indirect contacts between hydrophilic atoms of the peptide and hy-
drophilic atoms of the silica surface are indicated by dashed circle. An indirect con-
tact is formed when a water molecule is within 3 A distance of atoms of the silica and
the peptide.

Another form of indirect contacts have also been reported elsewhere [57]. In a
previous study, divalent cations shield the negative charge of DNA or silica surface
by making indirect bonds either with DNA backbone or with silanol groups on the
silica surface [148]. Another study revealed that water molecules binding to the silanol

groups play a shielding role in DNA association to the silica gel [149].
Peptide-Solvent interaction

There have been numerous experimental and theoretical studies in the literature ex-
amining the role of the coupling between protein and solvent fluctuations, as well
[150]. In particular, it is well known that protein and solvent degrees of freedom can
compete with each other to stabilize various types of interactions. To this end, we
obtained interaction energies between peptide and solvent as a function of center of
mass (COM) distance for conformations (v) and (viii). The density plots associated
with the interaction energy of the peptide with water is represented in Figure 3-17.
As expected, since conformation (v) is more exposed to the solvent, it is character-
ized by more stronger interactions with the solvent, while the enhancement of the

interactions between the peptide and silica surface in conformation (viii) results in

82



a decrease in its solvent exposure and therefore the magnitude of the interactions it

forms with surrounding water molecules.
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Figure 3-17: Density plot of total interaction energy (Electrostatictvan der Waals)
between protein and water vs. COM distance from silica surface. Left and right
figures corresponds to the conformations (v), and (viii) as specified in Figure 3-7,
respectively. Energies are averaged over the last 30 ns of the simulations.

3.3.3 Re-orientational dynamics

In the preceding discussions, we have focused our efforts on examining how the silica
surface affects the static properties of the peptide with particular emphasis on the
binding modes and the relative importance of hydrophobic and electrostatic interac-
tions. Given the strong interactions, we can already expect that this will have some
significant effects on the dynamical fluctuations of the peptide. This in turn, would
have important implications on the kinetics of amyloid aggregation.

Figure 3-18 compares the re-orientational dynamics of all the 48 configurations
belonging to three different clusters. The re-orientational dynamics was examined
by computing autocorrelation functions of the angle between the surface normal and
the vector associated with the N-C terminus dipole, as illustrated in Figure 3-19.
In addition, as mentioned earlier in the Methods section, we also examined the re-

orientational relaxation associated with the peptide in bulk water.
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Interestingly, we see that peptides associated with three different conformations

and binding modes at the interface, are characterized by rather different rotational

dynamics. In particular, cluster 2 which involves the peptide extended on the silica

surface, appears to have the slowest dynamics which occurs on a nanosecond timescale.

In some sense, the creation of many hydrophobic and polar contacts results in a

more drastic immobilization of the peptide. This is in accordance with the previous

experimental results showing limited degrees of freedom of peptide on surfaces [151].

Cluster 1 which takes on a more bent like structure appears to fluctuate slightly slower

than the peptide in the bulk without the surface.
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Figure 3-18: Autocorrelation function (ACF) of cosine of the the angle between N-
C terminus dipole and z axis. The last 30 ns of the simulations are used for the

calculation of ACF.
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Figure 3-19: Angle «, used in the reorientational dynamics calculations, is the angle
between the surface normal and the vector associated with the N-C terminus dipole.

In addition, we investigated the re-orientational dynamics of the two phenyl
residues with respect to each other by calculating the autocorrelation functions of
the cosine of angle between the two phenyl dipoles (the vector connecting atom CA
to atom CB) as is indicated with 3 in Figure 3-19. According to the results (Figure
3-20), the slowest and fastest dynamics belong to the peptide conformations in cluster
1 and 2, respectively. However, the difference between the autocorrelation functions
for this coordinate is not so significant. A magnified image of the shaded region in
Figure 3-20a is represented in Figure 3-20b representing an initial sharp decrease of

the autocorrelation functions.
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the shaded region in panel (a).
calculation of ACF.
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3.4 Conclusions and implications on amyloid aggre-
gation

In conclusion, we find that the amyloid beta segment 16-23 exhibits binds irreversibly
on the timescale of 10s of nanoseconds to the silica surface. Our study confirms previ-
ous findings showing that the binding of the peptide chain to the surface is driven by
a combination of both hydrophobic and electrostatic interactions. The binding modes
involve a combination of both hydrophobic interactions of the phenylalanine groups
as well as polar interactions between the charged parts of the amino acids and the
silica surface. We also show that there are a wide diversity of peptide conformations:
perpendicular to the surface; bent; and extended flat-on conformation on the surface.
Hence, the amorphous silica-water interface alters the conformation of the peptide in
a manner that will likely alter processes involving amyloid aggregation.

In this study, we did not look at the aggregation thermodynamics and kinetics
near the surface of amorphous silica. However, our single-peptide simulations provide
some qualitative insights into the possible mechanisms that might occur. Specifically,
whether the single peptide orientation is parallel (conformation viii) or perpendicular
to the surface (conformation v), might play an important role in the initial steps of
the nucleation process. In Figure 3-21 we show a schematic of the possible effects
that these two initial conformations may have on the eventual formation of the fibrils.
In the case of conformation (v) shown in the left panel (a,c), we can speculate that
this will predominantly lead to parallel beta sheets in the first layer in contact with
the silica surface. This is due to the fact that it costs a lot of energy to stabilize the
negatively charged termini close to the surface which is required to create an anti
parallel beta sheet. On the other hand, for conformation (viii) which lies parallel to
the surface, the aggregates in the first layer can involve both parallel and anti-parallel
beta sheets. However, the free energy of adsorption should be evaluated and com-
pared for each conformation accordingly. Umbrella sampling and steered MD have
already been utilized for this purpose in a similar study [68]. Moreover, the same

study used experimental adsorption isotherms to calculate peptide binding constants
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and free energy of binding from experiments.

Considering the fact that the aggregation process is computationally expensive, the
stability or possible conformational changes of fibrillar aggregates near the silica sur-
face can be further evaluated using the already-formed dimers, tetrameters, octamers,
etc. of the same peptide that we used here.

At this point, these ideas remain a conjecture which would be interesting to explore

in future simulations and experiments.

b

Figure 3-21: (a) Conformation of a monomer corresponding to system (v) (b) Confor-
mation of a monomer corresponding to system (viii) (¢) The most likely conformation
for vertically aligned peptide aggregations is the parallel beta-sheets. (d) Horizontally
aligned peptide aggregations can occur in both parallel and anti parallel beta-sheet
forms.
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Chapter 4

Conclusions and Suggestions

In this thesis, we applied molecular dynamics simulation to study the interaction of
specific biomolecules with two different surfaces: firstly, the interaction of cholesterol
and amyloid precursor protein with the cell membrane; secondly, the interaction of
the hydrophobic core of amyloid beta peptide with the amorphous silica surface.

In the first part of this thesis, the thermal conductivity of DPPC membrane con-
taining cholesterol at different concentrations and in the presence of amyloid protein
was studied. To the best of our knowledge, thermal conductivity values of cholesterol
and APP had not been studied so far and there was almost no information about
how these components influence heat conduction within the membrane. This study
utilized Miiller-Plathe reverse nonequilibrium molecular dynamics approach to calcu-
late thermal conductivity of membranes containing cholesterol and APP.

Our results show that the membranes composed of more cholesterol molecules have
smaller cross sectional areas than those containing less cholesterol molecules. On the
other hand, thermal conductivity is positively correlated with the concentration of
cholesterol in the membrane. Therefore, the higher the level of order and molecular
packing in the structure of lipid bilayers, the higher the thermal conductivity of the
membrane [152]. To find other possible reasons for the enhanced thermal conductivity
in membranes containing more cholesterol, we focused on the hydration of phospho-
lipid headgroups in two of our model membranes: one composed of 100% DPPC, and
the other composed of 50% DPPC and 50% cholesterol molecules. Radial distribution

functions of water molecules near the lipid head groups suggest that the phospholipid
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headgroups are more hydrated in the membrane contained 50% cholesterol. The high
density of water molecules at the lipid-water interface increases the membrane-water
interactions, which can partially compensate for the steep decrease in the local ther-
mal conductivity profile at the lipid-water interface [§].
Furthermore, we extended our model to the membranes with an asymmetric distribu-
tion of cholesterol between the two membrane leaflets. According to our results, the
thermal conductivity of asymmetric membranes is lower than that of symmetric ones.
The asymmetric membranes also revealed a small rectification effect. However, our
simulations did not reveal the flip-flop motion of cholesterol molecules between the
membrane leaflets, which is reported in the literature. The reason is that the length
of our simulations was shorter than the required time to capture a cholesterol flip-flop.
To this end, simulations up to some hundreds of nanoseconds are recommended for
future work. However, long simulations of large systems rely strongly on the available
computational facilities.
Moreover, our simulations with the membranes decorated with amyloid precursor
protein show a statistically significant difference between the thermal conductivity
coefficients in the forward and backward directions. This leads to a rectification ef-
fect when heat flows in opposite directions through the membrane-protein system.
We believe that thermal rectification is highly affected by the structure rather than
the temperature gradient. However, more studies are needed to support this idea.
Therefore, performing simulations at different conditions (at different temperatures)
is highly recommended for future work. Furthermore, membrane models with com-
positions similar to real membranes could provide more realistic results. However,
simulations with more complex structures do not necessarily provide better results.

In this study, we did not investigate the finite size effect on the value of thermal
conductivity mainly because of the limitation in time and computer resources. It is
highly recommended to study the thermal conductivity of bilayers with different sizes
as well.

In the second part of this thesis, we studied the behavioral changes of the hy-

drophobic core of amyloid beta peptide interacting with a silica surface using molecu-
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lar dynamics simulations. Our results reveal that in the 10s of nanosecond time scale,
the peptide binds to the silica surface and does not detach from the surface during
the 50 ns of our simulations.

We found that a combination of hydrophobic interactions of the phenylalanine groups
and polar interactions between the charged groups of peptide and the silica surface
define the binding modes. Our simulations were carried out at neutral pH in which the
silica surface has a moderate surface ionization. According to the previous reports,
charged peptides show different behaviors near the silica surfaces with different levels
of surface ionization. Therefore, it is highly recommended to repeat the simulation
at different levels of surface ionization for future work.

Another recommendation for the future work is to verify the dominant conformation
of the peptide on the surface at different salt concentrations which is a determining
factor in the adsorption of peptide to the surface. We only considered the physi-
ological pH and salt concentration in all of our simulations, mainly because of the
constraints in time and computational facilities. To study the system at different pH
values and therefore different surface ionization levels, it is required to apply different
salt concentrations to make the whole system neutral. According to the previous
studies, at low pH, less dissociated silanol groups are on the silica surface and there-
fore, a lower salt concentration is required to neutralize the system. This leads to a
lower concentration of cations on the silica surface and hence affects the adsorption
of the charged peptide.

In this study, we achieved a wide range of peptide conformations, some of which
are perpendicular to the surface, some are bent, and some are in an extended form
such that the peptide is lying on the surface. The amorphous silica-water interface,
thus, changes the peptide’s conformation in a way that is likely to modify processes
involving amyloid aggregation. Since an adequate sampling of the fibrillation process,
which is a slow process and happens in a large system, is still a real challenge at the
experimentally relevant timescales of microseconds and milliseconds, it is proposed
that future simulations of multimers (starting from a dimer, tetramer, etc.) be carried

out to measure the potential structural and dynamical changes in these structures and
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to verify their stability near the silica surface.
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Appendix A

Computational Part 1

Simulations of membrane and membrane-protein systems were performed on a system
with 24 MPI threads with the benchmark time of 0.75 ns per day.

LAMMPS Run Input File:

timestep 1

neighbor 2 bin

neigh modify delay 5 every 1

velocity all zero linear

compute ke all ke/atom

variable temp atom c_ke/1.5/0.0019858775

compute layers all chunk/atom bin/1d z lower 0.01 units reduced

fix 1 all nve

fix 2 all ave/chunk 10 100 1000 layers v_temp density/mass file tmpdens.profile
fix 3 all thermal/conductivity 100 z 100

variable tdiff equal f 2[51][3]-f 2[1]|3]

thermo 1000

thermo style custom step time temp xlo xhi ylo yhi zlo zhi epair etotal pe ke ebond
eangle edihed eimp evdwl ecoul elong vol press density f 3 v_tdiff
thermo_modify flush yes

dump 1 all ded 10000 nemd.dcd

dump _modify 1 unwrap yes

dump 2 all custom 10000 nemd.dump id type x y z vx vy vz ix iy iz
dump_modify 2 append yes

write_data nemd.data

run 20000000
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Appendix B

Computational Part 2

Simulations of silica-peptide system were performed on a system with 48 nodes and
the benchmark time of 8.88 ns per day.
GROMACS Run Input File:
constraints = none
constraint_algorithm = LINCS
lincs order = 4

lincs iter = 1

lincs_warnangle = 30

integrator = md

emstep = 0.0001

emtol = 50.0

comm_mode = none;

comm_grps = system;

nstcomm = 10

dt = 0.001 nsteps = 50000000
nstxout = 10000

nstvout = 10000

nstfout = 0

nstlog = 10000

nstenergy = 10000

nstxtcout = 10000
cutoff-scheme = group

nstlist = 10

ns_type = grid

pbc = xyz

periodic_molecules = no
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rlist =1

rlistlong = 1

rcoulomb = 1

coulombtype = PME

epsilon r = 1

vdwtype = user

rvdw = 1

DispCorr = no

energygrps = LYS LEU VAL PHE1 PHE2 ALA GLU ASP NaB CIB OXB 0OSil OGem
OMB SIB SiSil SiGem HSil HGem OW HW

energygrp_table = NaB OXB NaB OSil NaB OGem NaB OMB OMB OW OW SIB
OW SiSil OW SiGem OW HSil OW HGem HW OMB HW OXB OW 0OSil OW OGem
HW OSil HW OGem OXB OW

freezegrps = SIB OXB OMB SiSil OSil SiGem OGem

freezedm =YY YYYYYYYYYYYYYYYYYYY

Tcoupl = v-rescale

taut = 0.3
tc-grps = System
ref t = 300.0

Pcoupl = no

taup =4

pcoupltype = anisotropic

compressibility = 10.e-5 10.e-5 10.e-5 0.0 0.0 0.0
ref p=1.01.0 1.0 0.0 0.0 0.0

gen vel = yes

gen_temp = 300.0

gen_seed = 173529
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